Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Пример К1.




Уравнения движения точки в плоскости имеют вид:

, (1)

, (2)

где время t задано в секундах, координаты x, y - в метрах.

 

Найти:

1. уравнение траектории точки;

2. положение точки на траектории при (начальное положение) и при c ;

3. скорость точки;

4. ускорение точки;

5. касательное , нормальное ускорения точки и радиус кривизны траектории .

В каждом пункте выполнить соответствующие построения на рисунке.

 

Решение

Движение точки задано координатным способом.

1. Найдем уравнение траектории, исключив из (1) и (2) параметр t - время. Способ исключения t зависит от вида функций в правых частях (1), (2). В данном случае найдем из (1), (2) соответственно

.

Возводя полученные соотношения в квадрат, после этого складывая их и учитывая, что , найдем :

Из этого уравнения следует, что траекторией точки является эллипс, полуоси которого равны 4 м и 6 м, а центр имеет координаты (0, 0).

Выберем масштаб длин и выполним рисунок. Следует заметить, что приведенный рис. 1 имеет вид, соответствующий уже окончанию решения; свой рисунок рекомендуется делать по мере продвижения решения. Это позволяет контролировать получаемые результаты и делает их более наглядными. Данное замечание относится и ко всем последующим задачам пособия.

2. Находим положение точки при , подставляя это значение t в (1) и (2):

3. Находим положение точки при , подставляя это значение t в (1) и (2):

Указываем на рисунке точки и , учитывая масштаб координат.

4. Найдем скорость точки. Из теории следует, что при координатном способе задания движения определяются сначала проекции скорости на оси координат. Используя (1) и (2) - уравнения движения точки - находим

, (3)

. (4)

Модуль скорости . Подставляя сюда (3), (4), получим

. (5)

При с : , ,

. (6)

Рис. 1 Выберем масштаб для скоростей (рис.1), проведем в точке M1 линии парал-лельные осям x и y, и на этих линиях в масштабе скоростей отложим отрезки: 5,44 по оси x и - 4,71 по оси y, что соответствует величи-нам и знакам найденных проекций скорости. На этих составляющих строим пара-ллелограмм (прямоуголь-ник), диагональ которого по величине и направлению соответствует вектору . Проверьте следующее: длина построенного вектора должна получиться равной найденному значению

(с учетом масштаба скоростей). Вектор направлен по касательной к траектории в точке и показывает направление движения точки по траектории.

Удобно сейчас построить в точке естественные оси: касательную и главную нормаль (они потребуются позже). Касательную проводим вдоль ; главную нормаль проводим перпендикулярно в плоскости рисунка и направляем к центру кривизны траектории в точке (в сторону вогнутости траектории).

5. Находим ускорение точки, используя (3), (4):

, (7)

. (8)

Модуль ускорения . Из (7), (8) получим

. (9)

Подставляя в (7) - (9) , найдем

, ,

. (10)

В точке строим в масштабе проекции ускорений , учитывая их величины и знаки, а затем строим вектор ускорения . Построив , следует проверить, получилось ли на рисунке (c учетом масштаба ускорений), и направлен ли вектор в сторону вогнутости траектории (вектор проходит через центр эллипса, но это есть особенность данной задачи, связанная с конкретным видом функций (1) и (2)).

6. Находим касательное ускорение , характеризующее изменение модуля .

Учитывая (5), получим .

При

. (11)

Касательное ускорение можно также найти, дифференцируя по времени равенство Получим

, откуда следует

Нормальную составляющую ускорения, характеризующую изменение направления , можно найти по формуле

, (12)

если - радиус кривизны траектории заранее известен, или (учитывая, что, и, следовательно, ) по формуле

. (13)

Так как в данной задаче радиус заранее неизвестен, то используем (13). Подставляя (10), (11) в (13), получим

. (14)

Вернемся к рис. 1. Ранее на этом рисунке вектор был построен по составляющим , . С другой стороны, этот вектор можно разложить на составляющие по естественным осям и (пользуясь правилом параллелограмма). Выполним это разложение и построим на рисунке векторы и . Полезно провести проверку: с учетом масштаба ускорений определить по рисунку величины , и убедиться, что они совпадают с (11), (14).

Заметим, что движение точки ускоренное, т.к. направления векторов и совпадают (рис. 1).

Найдем радиус кривизны , используя (12), откуда следует, что . Подставляя в последнее соотношение и из (6) и (14), получим радиус кривизны траектории в точке : . Отложим на рисунке от точки по оси отрезок длины (в масштабе длин); полученная точка есть центр кривизны траектории в точке .

Объединяя полученные результаты, запишем ответ:

1. траектория точки - эллипс, имеющий уравнение ;

2.

3.

4. ;

5. ;

6. ; ;

.

Обсудим некоторые особенности и частные случаи, которые могут встретиться в задачах.

Если траектория точки - прямая линия, то и, следовательно, . Найденное по величине и направлению ускорение равно ускорению .

Если траектория точки - окружность, то , где R - радиус окружности (определяется из уравнения траектории). Если скорость V точки найдена, то . Вектор направлен к центру окружности. Касательное ускорение , полное ускорение .

 


Поделиться:

Дата добавления: 2015-02-10; просмотров: 95; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты