Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Описание отчетов о решении задачи




Читайте также:
  1. D) Задачи воспитания в пубертетном возрасте. Кристоф Вихерт
  2. I Цели и задачи изучения дисциплины
  3. I. Задачи настоящей работы
  4. I. Ознакомление с условием задачи и его анализ
  5. I. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ
  6. I. Цели и задачи проекта
  7. II. ЗАДАЧИ РЕЛИГИОЗНОГО ВОСПИТАНИЯ В СЕМЬЕ
  8. II. Описание экспериментальной установки.
  9. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  10. II. Основные цели, задачи и сроки реализации Программы

Отчет по результатам: таблица Целевая ячейка выводит сведения о целевой функции; таблица Изменяемые ячейкипоказывает значение искомых переменных, полученных в результате решения задачи; таблица Ограничения отображает результаты оптимального решения для ограничений и для граничных условий. В поле Формулаприведены зависимости, которые были введены в окно Поиск решения,в поле Разница– величины использованного материала. Если материал используется полностью, то в поле Статусуказывается связанное,при неполном использовании материала в этом поле указывается не связан.Для граничных условий приводятся аналогичные величины с той лишь разницей, что вместо величины неиспользованного продукта показана разность между значением переменной в найденном оптимальном решении и заданным для нее граничным условием.

Отчет по устойчивости содержит информацию о том, насколько полученное решение устойчиво при изменениях в коэффициентах целевой функции и ограничениях. В графе Изменяемые ячейки приводятся рассчи­танные значения искомых переменных и их двойственных оценок. Для каждой переменной рассчитывается показатель Нормированная стоимость (в Excel 7.0 – «редуцированная стоимость») – коэффициент, показывающий, насколь­ко изменяется целевая функция при изменении соответствующей переменной (т.е. при ее принудительном включении в оптимальный план) на одну единицу. В этой же графе приводятся оценки для предельных приращений коэффициен­тов целевой функции (допустимое увеличение и допустимое уменьшение), при которых возможно корректное применение показателя «нормированная стои­мость», а также сохраняется оптимальное решение (т.е. сохраняется структура оптимального плана).

В графе Ограничения приводятся аналогичные значения и двойственные оценки для ограничений оптимизационной задачи. Теневая цена – коэффи­циент, показывающий, насколько изменяется целевая функция при изменении соответствующего ресурса (ограничения) на единицу. В столбцах Допустимое увеличение и Допустимое уменьшение приводятся предельные значения приращений ресурсов, при которых номенклатура оптимального плана сохра­няется (остаются переменные, вошедшие в базис) и возможно корректное при­менение показателя «теневая цена».

Отчет по пределам – в отчете показано, в каких пределах может изменяться количество материалов, вошедших в оптимальное решение, при сохранении структуры оптимального решения; приводятся значения переменных в оптимальном решении, а также нижние и верхние пределы изменения значений переменных; здесь также указаны значения целевой функции при выпуске данного типа продукции на верхнем и нижнем пределах.



3. Двойственность в задачах линейного программирования. Анализ полученных оптимальных решений

В 1975 г. наш соотечественник Л.В. Канторович был удостоен Нобелевской премии по экономике (совместно с американским экономистом Т. Купмансом) за разработку теории оптимального использования ресурсов. С каждой задачей линейного программирования тесно связана другая линейная задача, называемая двойственной; первоначальная задача называется исходной, или прямой. Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой.

Переменные двойственной задачи yi называются объективно обусловленными оценками (или двойственными оценками, «ценами» ресурсов, теневыми ценами).



Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.

Двойственная задача по отношению к исходной составляется согласно следующим правилам:

1) целевая функция исходной задачи формулируется на максимум, а целевая функция двойственной задачи – на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид (≤), в задаче на минимум вид (≥);

2) матрица А, составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная матрица АТв двойственной задаче получаются друг из друга транспонированием;

3) число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи – числу переменных в исходной;

4) коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи – коэффициенты при неизвестных в целевой функции исходной;

5) каждому ограничению одной задачи соответствует переменная другой задачи, номер переменной совпадает с номером ограничения. При этом ограничению, записанному в виде неравенства ≤, соответствует переменная, связанная условием неотрицательности. Если функциональное ограничение исходной задачи является равенством, то соответствующая переменная двойственной задачи может принимать как положительные, так и отрицательные значения.

Модель исходной (прямой) задачи в общем виде может быть записана следующим образом:

, (10)

(11)



а модель двойственной задачи –

(12)

(13)

 

Решая ЗЛП симплекс-методом, мы одновременно решаем двойственную ЗЛП. Переменные двойственной задачи yί называют объективно обусловленными оценками.

Рассмотрим анализ оптимального решения на основе примера 1. Решение произведено с использованием MS Excel (Поиск решения) и представлено на рисунке 13.

 

Создание отчёта по результатам поиска решения

Excel позволяет представить результаты поиска решения в форме отчёта (рис. 25, 26).

Существует три типа таких отчётов:

· отчет по устойчивости «Sensitiviti», содержащий сведения о чувствительности решения к малым изменениям в изменяемых ячейках или в формулах ограничений;

· отчет по пределам «Limits». Помимо исходных и конечных значений изменяемых и целевой ячеек, в отчёт включаются верхние и нижние границы значений, которые могут принимать влияющие ячейки при соблюдении ограничений;

· отчет по результатам «Answer». В отчёт включаются исходные и конечные значения целевой и изменяемых ячеек, дополнительные сведения об ограничениях.

В отчёте по результатам содержатся оптимальные значения переменных Х1, Х2, Х3, Х4 , которые, соответственно, равны 0; 30; 10; 0; значение целевой функции – 150, а также левые части ограничений (рис. 25).

Рис. 25. Отчёт по результатам

 


Дата добавления: 2015-04-04; просмотров: 29; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты