КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Цель и основы нормализации
Нормализация – это разбиение таблицы на две или более, обладающих лучшими свойствами при включении, изменении и удалении данных. Окончательная цель нормализации сводится к получению такого проекта базы данных, в котором каждый факт появляется лишь в одном месте, т.е. исключена избыточность информации. Это делается не столько с целью экономии памяти, сколько для исключения возможной противоречивости хранимых данных
Если отношение не находится в достаточной для него нормальной форме, то при работе с ним могут возникать следующие аномалии: · Избыточность · Потенциальная противоречивость (аномалия обновления) · Аномалия включения · Аномалия удаления
Каждой нормальной форме соответствует некоторый определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений. Примером набора ограничений является ограничение первой нормальной формы - значения всех атрибутов отношения атомарны. Поскольку требование первой нормальной формы является базовым требованием классической реляционной модели данных, мы будем считать, что исходный набор отношений уже соответствует этому требованию.
В теории реляционных баз данных обычно выделяется следующая последовательность нормальных форм: · первая нормальная форма (1NF); · вторая нормальная форма (2NF); · третья нормальная форма (3NF); · нормальная форма Бойса-Кодда (BCNF); · четвертая нормальная форма (4NF); · пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF).
3.2 Основные свойства нормальных форм:
Каждая следующая нормальная форма в некотором смысле лучше предыдущей; При переходе к следующей нормальной форме свойства предыдущих нормальных свойств сохраняются. В основе процесса проектирования лежит метод нормализации, декомпозиция отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы. Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости.
Первая нормальная форма: отношение R находится в первой нормальной форме (1NF) тогда и только тогда, когда ни одна из ее строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто
Вторая нормальная форма:отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда находится в 1NF, и каждый неключевой атрибут полностью зависит от первичного ключа (предполагается, что единственным ключом отношения является первичный ключ). Если допустить наличие нескольких ключей, то это определение примет следующий вид: отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда оно находится в 1NF, и каждый неключевой атрибут полностью зависит от каждого ключа R.
Третья нормальная форма: отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 2NF и каждый неключевой атрибут нетранзитивно зависит от первичного ключа (определение дается в предположении существования единственного ключа.). Для отношения с составным первичным ключом: отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 1NF, и каждый неключевой атрибут не является транзитивно зависимым от какого-либо ключа R.
На практике третья нормальная форма схем отношений достаточна в большинстве случаев, и приведением к третьей нормальной форме процесс проектирования реляционной базы данных обычно заканчивается. Однако иногда полезно продолжить процесс нормализации.
Нормальная форма Бойса-Кодда: отношение R находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, если каждый детерминант является возможным ключом.
Четвертая нормальная форма: отношение R находится в четвертой нормальной форме (4NF) в том и только в том случае, если в случае существования многозначной зависимости A (r) (r) B все остальные атрибуты R функционально зависят от A.
Пятая нормальная форма: отношение R находится в пятой нормальной форме (нормальной форме проекции-соединения - PJ/NF) в том и только в том случае, когда любая зависимость соединения в R следует из существования некоторого возможного ключа в R.
Пятая нормальная форма – это последняя нормальная форма, которую можно получить путем декомпозиции. Ее условия достаточно нетривиальны, и на практике 5NF не используется.
|