Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Погрешность решения




Читайте также:
  1. A) принятие решения о финансировании одного из них не влияет на принятие решения о финансировании другого;
  2. Gt; во-вторых, когнитивной оценкой (cognitive appraisal), которую человек дает событию, требующему разрешения.
  3. II. Пример решения.
  4. III. Алгоритм решения кинематических задач
  5. III. Когда выгодно рассматривать движение из движущейся системы отсчета (решения двух задач учителем)?
  6. III. Примеры решения задач.
  7. III. Примеры решения задач.
  8. III. Примеры решения задач.
  9. IV. Примеры решения задач.
  10. IV. Примеры решения задач.

Погрешность решения методом конечных разностей в первую очередь определяется ошибкой, вносимой при замене исходного дифференциального уравнения на его конечно-разностный аналог.

Вначале оценим погрешность аппроксимации (6.70) для первой производ­ной, используя разложение u(x) в окрестностях точки xi в ряд Тейлора:

(6.82)

откуда

(6.83)

Согласно (6.82) погрешность конечно-разностной аппроксимация по формуле (6.70) обусловлена тем, что в ней не учитываются слагаемые высоких порядков, начиная с . Можно утверждать, что в (6.83) слагае­мые убывают по мере увеличения их порядка. Поэтому ошибка (6.70) приближенно равна .

Аналогичную оценку нетрудно провести и для второй производной. Для этого необходимо воспользоваться (6.82) и аналогичным разложением, за­писанным для :

(6.84)

Сложив (6.82) и (6.84) получим выражение для второй производной:

(6.85)

Из сравнения (6.85) и (6.72) видно, что погрешность (8) определяется не уч­тенными в ней слагаемыми высоких порядков, начиная с . Поэтому ошибка (6.72) уменьшается пропорционально квадрату . Данный ре­зультат полезно учитывать при выборе шага сетки. Так, например, уменьшение вдвое шага приводит к снижению ошибки аппроксимации для уравнения эллиптического типа в четыре раза.

Нельзя утверждать, что уменьшение шага сетки однозначно повышает точность решения методом конечных разностей. С увеличением количества уз­лов сетки возрастает объем вычислений и, следовательно, растут вычислитель­ные погрешности. На практике для оценки погрешности решения можно про­вести ряд пробных расчетов с разными значениями шага сетки и выбрать вари­ант, обеспечивающий приемлемую точность при невысоких вычислительных затратах.


Дата добавления: 2015-04-05; просмотров: 4; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты