КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Перестановки.Комбинация из n элементов, которые отличаются друг от друга только порядком элементов, называются перестановками. Перестановки обозначаются символом Рn, где n- число элементов, входящих в каждую перестановку. (Р - первая буква французского слова permutation- перестановка). Число перестановок можно вычислить по формуле или с помощью факториала: Запомним, что 0!=1 и 1!=1. Пример 2. Сколькими способами можно расставлять на одной полке шесть различных книг? Решение. Искомое число способов равно числу перестановок из 6 элементов, т.е. . 2. Размещения. Размещениями из m элементов в n в каждом называются такие соединения, которые отличаются друг от друга либо самими элементами (хотя бы одним), либо порядком из расположения. Размещения обозначаются символом , где m- число всех имеющихся элементов, n- число элементов в каждой комбинации. (А-первая буква французского слова arrangement, что означает «размещение, приведение в порядок»). При этом полагают, что n m. Число размещений можно вычислить по формуле , т.е. число всех возможных размещений из m элементов по n равно произведению n последовательных целых чисел, из которых большее есть m. Запишем эту формулу в факториальной форме: . Пример 3. Сколько вариантов распределения трех путевок в санатории различного профиля можно составить для пяти претендентов? Решение. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е. .
|