Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Среднее квадратичное отклонение и дисперсия случайной величины.




Читайте также:
  1. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  2. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  3. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  4. Б) Функция распределения и плотность вероятности непрерывной случайной величины
  5. Билет №8. Закон распределения системы случайных величин. Функция и плотность двумерной случайной величины и их свойства.
  6. В этом случае среднее сопротивление обратной последовательности
  7. ВАРИАЦИОННЫЕ РЯДЫ. СРЕДНИЕ ВЕЛИЧИНЫ. СТАНДАРТНОЕ ОТКЛОНЕНИЕ. СРЕДНЯЯ ОШИБКА СРЕДНЕЙ АРИФМЕТИЧЕСКОЙ.
  8. Вариация показаний прибора — наибольшая разность показаний прибора при одном и том же значении измеряемой величины.
  9. Величины.
  10. Вероятностная оценка случайной величины – наработки до второго отказа

Пример 2. Найдем математическое ожидание случайных величин и , зная законы их распределения

1)

-8 -4 -1

2)

-2 -1

 

Решение:

,

.

a)
Получили любопытный результат: законы распределения величин и разные, а их математические ожидания одинаковы.

 

б)

 

 


Из рисунка б видно, что значение величины более сосредоточены около математического ожидания , чем значения величины , которые разбросаны (рассеяны) относительно ее математического ожидания (рисунок а).

Основной числовой характеристикой степени рассеяния значений случайной величины относительно ее математического ожидания является дисперсия, которая обозначается через .

Определение. Отклонением называется разность между случайной величиной и ее математическим ожиданием , т.е. .

Отклонение и его квадрат также являются случайными величинами.

Определение. Дисперсией дискретной случайной величины называется математическое ожидание квадрата ее отклонения:

.

Свойства дисперсии.

1. Дисперсия постоянной величины С равна 0:

.

2. Если - случайная величина, а С – постоянная, то

.

3. Если и - независимые случайные величины, то

.

Для вычисления дисперсий более удобной является формула

.

Пример 3. Дискретная случайная величина распределена по закону:

 

-1
0,2 0,1 0,3 0,4

 

Найти .

Решение. Сначала находим .

,

а затем .

.

По формуле имеем

.

Средним квадратичным отклонением случайной величины называется корень квадратный из ее дисперсии:

.

 

 


Дата добавления: 2015-04-05; просмотров: 5; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты