КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Некоторые свойства неопределенного интегралаСтр 1 из 6Следующая ⇒ Таблица интегралов. Прежде чем приступить к изложению методов интегрирования, приведем таблицу интегралов от простейших функций. 1. = .(Здесь и в последующих формулах под С понимается
произвольная постоянная.). 2. = . 3. = 4. = 5. = . 6. = . 7. = . 8. = . 9. = . 10. = 11. = . 11′. = . 12. = . 13. = . 13′ = . 14. = . Справедливость формул 7,8,11′,12,13′и 14 легко устанавливается с помощью дифференцирования. В случае формулы 7 имеем ′= , следовательно, . В случае формулы 8 ′= , следовательно, = .
В случае формулы 12 ′= , следовательно, = . В случае формулы 14
следовательно, = .
Некоторые свойства неопределенного интеграла Теорема 1.Неопределенный интеграл от алгебраической суммы двух или нескольких функций равен алгебраической сумме их интегралов: (1) Из доказательства найдем производные от левой и правой частей этого равенства. На основании равенства (4) пункта №1 находим Таким образом, производные от левой и правой частей равенства (1) равны между собой, т. е. производная от любой первообразной, стоящая в левой части, равняется производной от любой функции, стоящей в правой части равенства. Следовательно по теореме из пункта №1 любая функция, стоящая в левой части равенства (1), отличается от любой функции, стоящей в правой части равенства(1), на постоянное слагаемое. В этом смысле и нужно понимать равенство (1). Теорема 2.Постоянный множитель можно выносить за знак интеграла, т. е. если a=const, то (2) Для доказательства равенства (2) найдем производные от левой и правой его частей: Производные от правой и левой частей равны, следовательно, как и в равенстве (1), разность двух любых функций, стоящих слева и справа, есть постоянная. В этом смысле и следует понимать равенство (2). При вычислении неопределенных интегралов бывает полезно иметь в виду следующие правила. 1).Если то (3) Действительно, дифференцируя левую и правую части равенства (3) получим Производные от правой и левой частей равны, что и требовалось доказать. 2). Если то
(4) 3. Если то . (5) Равенства (4) и (5) доказываются дифференцированием правой и левой частей равенств. Пример 1. = Пример 2.
= =
Пример 3. .
Пример 4. Пример 5.
|