![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Интегрирование методом замены переменой или способом подстановкиПусть требуется найти интеграл Сделаем замену переменной в подынтегральном выражении, положив x=φ(t), (1) где φ(t)-непрерывная функция с непрерывной производной, имеющая обратную функцию. Тогда dx= φ′(t)dt;докажем, что в этом случае имеет место следующее равенство:
Здесь подразумевается, что после интегрирования в правой части равенства вместо t будет подставлено его выражение через х на основании равенства (1). Для того чтобы установить, что выражения, стоящие справа и слева, одинаковы в указанном выше смысле, нужно доказать, что их производные по х равны между собой . Находим производную от левой части : Таким образом, имеем
Следовательно, производные от х от право й и левой частей равенства (2) равны, что и требовалось доказать. Функцию Замечание.При интегрировании иногда целесообразнее подбирать замену переменной не в виде Здесь удобно положить
тогда
Приведем несколько примеров на интегрирование с помощью замены переменных. Пример 1.
Пример 2.
Пример 3.
Пример 4. (предполагается, что a>0). В примерах 3 и 4 выделены формулы ,приведенные в таблице интегралов под номерами 11′и 13′(см. выше,пункт №2). Пример 5.
Пример 6. Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким -либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных.
|