Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Геометрические построения

Читайте также:
  1. III. Произвести анализ риска путем построения дерева событий.
  2. Аксиоматический способ построения теории
  3. Алгоритм Квайна построения сокращенной ДНФ.
  4. Алгоритм построения сокращенной ДНФ с помощью КНФ
  5. В. Логика построения курса менеджмент
  6. Виды органов исполнительной власти. Система органов исполнительной власти, организационные и правовые основы ее построения.
  7. Вопрос 20. Система органов исполнительной власти, принципы ее построения.
  8. Вопрос: Финансовая система. Принципы построения финансовой системы государства (государственный бюджет).
  9. Геометрические вероятности.
  10. Геометрические и оптические условия фототрансформирования.

Деление окружности на равные части

Некоторые детали имеют элементы, равномерно распределенные по окружности. При выполнении чертежей деталей, имеющих подобные элементы, необходимо уметь делить окружность на равные части. Приемы деления окружности на равные части приведены на рис. 1

Рис. 1. Деление окружности на равные части

С достаточной точностью можно делить окружность, на любое число равных частей пользуясь таблицей коэффициентов для подсчета длины ходы.

По количеству равных отрезков на окружности (таблица 1) находим соответствующий коэффициент. При перемножении полученного коэффициента на диаметр окружности, получаем длину хорды, которую циркулем откладываем на окружности.

Таблица 1 - Коэффициент для определения длинны хорды

Количество частей окружности Коэффициент
0,866025 0,707107 0,587785 0,433884 0,382633 0,342620 0,309017 0,281733 0,258810 0,239316 0,222521 0,207912 0,105090 0,183750 0,173648 0,164595

Выполнение сопряжения между двумя линиями

При вычерчивании контуров технических деталей и в других технических построениях часто приходится выполнять сопряжения (плавные переходы) от одних линий к другим. Сопряжение двух сторон угла дугой заданного радиусу дуги R выполняют в следующей последовательности:

- параллельно сторонам угла на расстоянии, равном R, проводят две вспомогательные прямые линии;

- точка пересечения этих прямых будет центром сопряжения;

- из центра сопряжения выполняют перпендикуляры на заданные прямые;

- точки пересечения перпендикуляров с заданными прямыми называют точками сопряжения;

- из центра сопряжения строят дугу радиусом R, соединяя точки сопряжения.

На рис. 2 приведены примеры построения сопряжений, когда задан радиус дуги сопряжения. В этом случае необходимо определить центр сопряжения и точки сопряжения. Обводку контура детали производят с помощью циркуля.

Рис. 2. Приемы построения сопряжений

В технике часто приходится вычерчивать кривые линии, составленные из большого количества малых дуг окружностей с постепенным изменением радиуса их кривизны. Такие линии невозможно провести циркулем. Эти кривые вычерчивают с помощью лекал и называют лекальными. Необходимо изучить закономерность образования лекальной кривой и нанести на чертёж ряд принадлежащих ей точек. Точки соединяют плавной кривой тонкой линией от руки, а обводку выполняют с помощью лекала.



Для обводки лекальных кривых нужно иметь набор нескольких лекал. Выбрав подходящее лекало, подгоняют кромку части лекала к возможно большему количеству найденных точек. Чтобы обвести следующий участок, нужно подогнать кромку лекала ещё к двум-трём точкам, при этом лекало должно касаться части уже обведённой кривой. Способ проведения кривой по лекалу приведён на рис. 3.

Рис. 3. Построение кривой по лекалу.

 

На рис. 4 показан пример построения эллипса по заданным осям AB и CD.

Рис. 4. Построение эллипса

 

На рис. 5 показан пример построения параболы с помощью деления сторон угла AOC на одинаковое количество равных частей. На рис. 6 дан пример построения эвольвенты окружности. Заданная окружность разделена на 12 равных частей. Через точки деления проведены касательные к окружности. На касательной, проведённой через точку 12, отложена длина данной окружности и разделена на 12 равных частей. Начиная от точки l на касательных к окружности, последовательно откладывают отрезки, равные 1/12 длины окружности, 1/6, 1/4 и т. д.



Рис. 5. Построение параболы

 

Рис. 6. Построение эвольвенты

 

Рис. 7.Построение синусоиды

 

Рис.8 Построение спирали Архимеда

 

На рис. 7 показан приём построения синусоиды. Заданная окружность разделена на 12 равных частей, на такое же число равных частей делится отрезок прямой, равный длине развёрнутой окружности (l1). Проведя через точки деления горизонтальные и вертикальные прямые, находят в их пересечении точки синусоиды.

На рис. 7 показан пример построения спирали Архимеда. Для построения её делят заданную окружность на 12 равных частей, радиус окружности также делим на 12 равных частей. Проводят лучи из центра через точки деления окружности. Откладывают на первом луче одно деление радиуса, на втором – два и т. д., получают ряд точек спирали, которые соединяют с помощью лекала.

 


Дата добавления: 2014-10-31; просмотров: 129; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
ВВЕДЕНИЕ. Виды измерений. Абсолютная и относительная погрешность | Общие сведения о видах проецирования
lektsii.com - Лекции.Ком - 2014-2019 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты