КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Внутренние силовые факторы при крученииКручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две противоположно натравленные пары сил. Рассмотрим внутренние силовые факторы при кручении круглого бруса (рис. 26.1). Для этого рассечем брус плоскостью I и рассмотрим равновесие сеченной части (рис. 26.1а). Сечение рассматриваем со стороны отброшенной части. Внешний момент пары сил разворачивает участок бруса против часовой стрелки, внутренние силы упругости сопротивляются повороту. В каждой точке сечения возникает поперечная сила dQ рис. 26.16). Каждая точка сечения имеет симметричную, где возникает поперечная сила, направленная в обратную сторону. Эти силы разуют пару с моментом dm=pdQ; p — расстояние от точки до центра сечения. Сумма поперечных сил в сечении равна нулю: ΣdQ = 0. С помощью интегрирования получим суммарный момент сил упругости, называемый крутящим моментом: . Практически крутящий момент определяется из условия равновесия отсеченной части бруса. Крутящий момент в сечении равен сумме моментов внешних сил, действующих на отсеченную часть (рис. 26.1в): , т.е. ; .
|