КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Распространение загрязняющих веществ.Перенос веществ на большие расстояния, например, из северного полушария в южное, т.е. из мест наиболее интенсивной промышленной деятельности в места относительно менее нагруженные, происходит с воздушными потоками – ветрами. Ветра обусловлены общей циркуляцией атмосферы под действием разогрева воздуха солнцем. Определенный вклад в движение атмосферы вносит и вращение земли (кориолисово ускорение). предприятие не может функционировать без выбросов в атмосферу или сбросов в водоемы иди водотоки. Попадая в эти текучие Среды, вещества должны быть как можно быстрее и тщательнее перемешаны с принимающей средой, чтобы концентрация в регламентируемых точках не превышала нормативные (допустимые) значения. При этом используется свойство текучих сред переносить вещество и момент количества движения во всех направлениях ( в т.ч. и против основного потока). Такое свойство движений, если они упорядочены, связано с конвекцией, а при больших интенсивностях в случае потери дальнего порядка - с турбулентностью. Существуют три механизма, приводящие к уменьшению концентрации загрязняющих веществ в атмосфере: 1) рассеяние (путем конвективного и турбулентного) перемешивания выбросов в атмосфере; 2) деградация (трансформация), в результате химических и биохимических процессов; 3) иммобилизация, т.е. потеря подвижности 3В в результате физико-химических процессов адсорбции или биохимических процессов поглощения. Известны три механизма рассеяния 3В в атмосфере: молекулярная диффузия; конвективная диффузия; турбулентная диффузия. Молекулярная диффузия - самостоятельный вид переноса массы. Этот способ переноса может существовать и без конвекции или турбулентности. Он проявляется только на очень малых расстояниях. Поэтому молекулярная диффузия в «чистом виде» не представляет интереса для описания переноса веществ от источников на расстояния, рассматриваемые при мониторинге. Считается, что в переносе доминирует турбулентное движение и турбулентная диффузия ЗВ. Поэтому важной является характеристика процессов стратификации атмосферы величиной критерия Ричардсона Ri, который есть отношение факторов, стабилизирующих горизоньальное движение, к факторам, детабилизирующим его. Если выбрасываемые в воздух примеси состоят из крупных частиц, то, распространяясь в атмосфере, они под действием силы тяжести начинают спускаться с определенной постоянной скоростью в соответствии с законом Стокса. Гравитационный поток тяжелых частиц оказывается намного больше диффузионного, тогда как для легких примесей он практически несуществен. Поскольку наиболее опасны для окружающей среды примеси газообразного вида типа окислов, то именно таким легким соединениям следует уделять наибольшее внимание. Наряду с мелкомасштабной диффузией, размывающей факелы примесей, большое значение в теории распространения загрязнений имеют флуктуации скорости и направления ветра за длительный период времени (около года). За такой период воздушные массы, увлекающие примеси от источника, многократно меняют направление и скорость. Предсказание распространения ЗВ осуществляется на основе моделирования процессов рассеяния веществ от источников: Различают два вида моделирования: 1)физическое; 2)математическое. Первое из названных требует создания физической модели – макета и изучения особенностей воздушных течений (обдувка макета в аэродинамической трубе). Хотя данный метод дает довольно точную картину распространения воздушных потоков и рассеяния примесей, он обладает двумя главными недостатками: требует больших материальных затрат и времени; не обеспечивает многовариантности без дополнительных существенных затрат. Методы математического моделирования можно разделить на: • детерминистические, предполагающие использование причинно-следственных уравнений, например, уравнений турбулентной диффузии; • стохастические, основанные на применении методов теории вероятности, например, гауссовских распределений; • комбинированные, когда используются детерминистические уравнения, а входящие в них величины вычисляются из вероятностных моделей Основная причина несоответствия между теорией и экспериментом состоит в принятии независимости коэффициентов турбулентной диффузии от координат. Если для предсказания коэффициентов турбулентного переноса используются соотношения теории вероятности, то приходят к комбинированным моделям.
|