Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


КОРРЕЛЯЦИОННАЯ ЗАВИСИМОСТЬ. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ И ЕГО СВОЙСТВА. УРАВНЕНИЯ РЕГРЕССИИ.




ЗАДАЧА корреляционного анализа сводится к:

1. Установлению направления и формы связи между признаками;

2. Измерению ее тесноты.

Функциональнойназывается однозначная зависимость между переменными величинами, когда определенному значению одной (независимой) переменной х, называемой аргументом, соответствует определенное значение другой (зависимой) переменной у, называемой функцией. (Пример: зависимость скорости химической реакции от температуры; зависимость силы притяжения от масс притягивающихся тел и расстояния между ними).

Корреляционной называется зависимость между переменными, имеющими статистистический характер, когда определенному значению одного признака (рассматриваемого в качестве независимой переменной) соответствует целый ряд числовых значений другого признака. (Пример: связь между урожаем и количеством осадков; между ростом и весом и т.д.).

Поле корреляции представляет собой множество точек, координаты которых равны полученным на опыте парам значений переменных х и у.

По виду корреляционного поля можно судить о наличии или отсутствии связи и ее типе.

 

Связь между величинами х и у линейная, положительная (прямая).   Связь между величинами х и у линейная, отрицательная (обратная).

 

Связь между величинами квадратичная.   Связи между величинами нет.

 

Связь называется положительной, если при увеличении одной переменной увеличивается другая переменная.

Связь называется отрицательной, если при увеличении одной переменной уменьшается другая переменная.

Связь называется линейной, если ее можно в аналитическом виде представить как .

Показателем тесноты линейной связи является коэффициент линейной корреляции. Эмпирический коэффициент линейной корреляции определяется выражением:

Коэффициент линейной корреляции лежит в пределах от -1 до 1 и характеризует степень близости между величинами x и y. Если:

1. - положительная корреляция;

2. - отрицательная корреляция;

3. - связь функциональная;

4. - связь высокая (или сильная);

5. - связь средняя;

6. - связь слабая;

7. - линейной связи нет.

Корреляционную зависимость между признаками можно описывать разными способами. В частности, любая форма связи может быть выражена уравнением общего вида . Уравнение вида и называются регрессией. Уравнение прямой регрессии у на х в общем случае можно записать в виде

Уравнение прямой регрессии х на у в общем случае выглядит как

Наиболее вероятные значения коэффициентов а и в, с и d могут быть вычислены, например, при использовании метода наименьших квадратов.

 


Поделиться:

Дата добавления: 2015-04-11; просмотров: 195; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты