Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Сложное движение точки. Теорема о сложении скоростей.




Читайте также:
  1. I. Запятая между независимыми предложениями, объединенными в одно сложное, и между придаточными, относящимися к одному главному
  2. II закон термодинамики. Теорема Карно-Клаузиуса
  3. II. (Теорема Больцано-Вейерштрасса).
  4. III. Когда выгодно рассматривать движение из движущейся системы отсчета (решения двух задач учителем)?
  5. Ordm;. Векторный способ задания движения точки.
  6. Ordm;. Связь между составляющими движениями в сложном движении материальной точки.
  7. Ordm;. Теорема о сложении скоростей.
  8. XII. Назначение и продвижение чиновников
  9. Z преобразование. Передаточная функция импульсных систем. Теорема Котельникова.
  10. А. Движение крестьян и работных людей в 30—60-е годы XVIII в.

Сложным называется такое движение точки, при котором она одновременно участвует в нескольких движениях. Абсолютным движением называется движение точки по отношению к неподвижной системе отсчета. Относительным называется движение точки по отношению к подвижной системе отсчета. Переносным называется движение той точки подвижной системы отсчета, в которой находится движущаяся точка, по отношению к неподвижной. Проще можно сказать: относительным движением называется движение точки по телу, а переносным движением - движение точки вместе с телом.

Скорость и ускорение точки по отношению к неподвижной системе отсчета называются абсолютными (v, а). Скорость и ускорение точки по отношению к подвижной системе отсчета называются относительными (v , а r). Скорость и ускорение той точки подвижной системы, в которой находится движущаяся точка, по отношению к неподвижной системе называются переносными (v , а ).

Теорема : скорость точки в абсолютном движении геометрически складывается из переносной и относительной скорости.

Например, на рис. 21 точка М совершает сложное движение: вращается вместе с диском – переносное движение, и двигается по хорде диска - относительное движение. При этом переносная скорость ve направлена перпендикулярно отрезку ОМ в сторону переносной угловой скорости ωe , а ее величина может быть найдена по формуле: ve = ωe∙OM. Абсолютную скорость точки М можно найти по теореме косинусов: , где: α – угол между векторами ve и vr.

20. Теорема о сложении ускорений при сложном движении.

Теорема: абсолютное ускорение точки геометрически складывается из переносного, относительного и Кориолисова ускорений.

,

где: - переносное ускорение, - относительное ускорение, - ускорение Кориолиса: . модуль ускорения можно найти по формуле:

=2| ωe |∙|vr |∙sinβ, где: β – угол между векторами и , в рассматриваемом случае этот угол равен 90º, так как вектор угловой скорости направлен перпендикулярно плоскости рисунка от нас. Для определения направления можно пользоваться, правилом векторного умножения или правилом Жуковского: для определения направления ускорения Кориолиса надо спроецировать вектор относительной линейной скорости на плоскость | оси переносного вращения и повернуть эту проекцию в этой плоскости на угол 90° в направлении переносной угловой скорости.



Ускорение Кориолиса равно нулю если:

1. = 0 ; т.е. переносное движение будет поступательным.

2. = 0 ; т.е. точка неподвижна по отношению к подвижной системе отсчета.

3. - точка движется параллельно оси переносного вращения.


Дата добавления: 2015-04-15; просмотров: 17; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты