Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Рефлексивные многочлены, порождающие дилемму заключенного




Дилемма заключенного является превосходной моделью, показывающей, что существуют ситуации, когда обыденные представления о рациональном поведении оказываются неприменимыми. Известный американский исследователь Анатоль Рапопорт полагает, что дилемма заключенного принадлежит к тем парадоксам, которые «иногда появляются на интеллектуальном горизонте, как предвестник важных научных и философских открытий» [26].

Дилемма, открытие которой приписывается американскому исследователю Таккеру, заключается в следующем. Двух подозреваемых берут под стражу и изолируют друг от друга. Прокурор убежден в том, что ими совершено серьезное преступление, но не имеет достаточных доказательств для предъявления им обвинения. Каждому заключенному говорится, что у него имеется альтернатива: признаться в преступлении или не признаться.

Если оба не признаются, то прокурор предъявит им обвинение в каком-либо незначительном преступлении, например, в незаконном хранении оружия, и оба получат небольшое наказание; если они оба признаются, то суд накажет обоих, но прокурор не потребует самого строгого приговора; если же один признается, а другой будет упорствовать, то признавшемуся приговор будет смягчен за выдачу сообщника, в то время как непризнавшийся получит самое строгое наказание. Любое решение, которое примет заключенный, неудовлетворительно с точки зрения рациональности, действительно, если он примет решение не признаваться, а его партнер признается, то он понесет значительный ущерб. Если же он признается, а партнер будет молчать, то он также понесет ущерб, по сравнению со случаем, если бы он не признался.

Мы попытаемся проанализировать некоторые рефлексивные механизмы, которые, как нам представляется, порождают эту дилемму, но построим другой пример, который облегчит анализ.

Представим себе следующую условную ситуацию. Пусть Х и Y — противники, вооруженные пистолетами. Если Х застрелит Y, то Х получит рубль. Если Y застрелит X, то Y получит рубль. Игроки не несут ни морального, ни юридического ущерба, если оказываются «убийцами». Решение игроки принимают независимо и не могут связаться друг с другом. Спрашивается, как они должны поступить. Х проводит такое рассуждение:

«Предположим, я выстрелю; тогда я либо выиграю рубль, либо погибну. Если я не выстрелю, я наверняка не выиграю рубль, но вероятность моей гибели не станет от этого меньше. Ведь мой противник принимает решение совершенно независимо ... Но противник проведет точно такое же рассуждение и тоже нажмет на спусковой крючок. Может быть, если я не нажму на крючок, то и он не нажмет на крючок... Нет, не проходит, ведь наши решения не связаны. Конечно, нам обоим выгодно не нажимать на спуск. Это он выведет. Он так и поступит! Ага, я выстрелю тогда и выиграю рубль. Но к такому же решению придет и он...».

В выделенном тексте приведено рассуждение игрока, который пытается принять решение, и сталкивается с непрерывными противоречиями. Оба варианта решения одинаково неубедительны. Чтобы выявить причину парадокса, представим себе следующую ситуацию: пусть те двое, вооруженные пистолетами, разделены перегородкой из тонкой зеркальной фольги, которая не является препятствием для пули. Х «видит» своего противника. Х медленно поднимает пистолет и видит, что модель противника также поднимает пистолет, и на лице модели появляется угрожающее выражение. Х понимает, что если он нажмет на крючок, то и модель нажмет на крючок. Поскольку эта модель—единственное средство прогнозировать поведение своего противника, то свой выстрел порождает и выстрел модели. Х медленно опускает пиcтолет. Противник также медленно опускает пистолет. «Я сейчас обману противника, — думает X, — он наверняка пользуется такой же моделью», — и тут же видит хитроватое выражение на лице модели и предупредительное движение пистолета.

Текст рассуждения, приведенный ранее, является порождением именно такой ситуации с зеркалом, когда сам игрок используется как модель своего противника. Любая мысль, которая приходит ему в голову, автоматически приходит в голову его сопернику. Они стоят друг перед другом и синхронно рассуждают, синхронно читают мысли друг друга. Игрока X, принимающего решение по такой схеме, можно изобразить следующим многочленом:

Qn=T+(Tx+Ty)x+{Tyx+Txy}x+(Txyx+Tyxy)x+ . .

Каждая картина с позиции X, лежащая перед ним самим, лежит и перед его партнером. С помощью внешнего множителя рефлексивный процесс, сохраняющий подобную симметрическую структуру «внутри» персонажа Х выразить невозможно. Мы должны ввести «вложенные» операторы осознания. Формально многочлен можно переписать так:

Qn=T+[T(1+x+y)n]x.

Независимо от значения п внутренний мир персонаж Х будет представлять собой симметрический многочлен. Любое решение, которое выработал персонаж X, автоматически принимается его противником. Если Х принимает решение стрелять, то и противник принимает решение стрелять. Аналогично, если Х принимает решение не стрелять, то и противник принимает решение не стрелять, но тогда Х принимает решение стрелять, которое немедленно принимается противником. Таким образом, мы видим, что дилемма порождается тождественностью решений, которые принимают противники во внутреннем мире X.

Представляется очень важным точно сформулировать вопрос: перед кем стоит дилемма? Часто путают подлинную дилемму, которая в подобных ситуациях возникает перед игроком, с задачей, стоящей перед исследователем операций, который должен рекомендовать оптимальное решение.

Оптимальное решение в условиях дилеммы заключенного невозможно. Отсутствие возможности найти оптимальное решение само по себе не является парадоксом. Парадокс возникает перед игроком, который, имея определенную модель противника, принимает оптимальное решение, которое сразу же оказывается убийственным для него. Обратим внимание, что если бы игрок Х был «устроен» иначе, например, был бы «вооружен» оператором осознания w =1+x+ух, который бы приводил его в состояние

Q=T+(Q+Qy)x ,

то никакой дилеммы перед ним не возникало бы. Он должен стрелять. Действительно, предположим, что игрок Х принял решение не стрелять; поскольку Y - «всевидящий глаз», читающий его мысли, то он примет решение стрелять, чтобы выиграть рубль. Поэтому ему остается только другая альтернатива - стрелять. При этом, с позиции X, решение Y не определено. Мы ведь не предполагаем, что противники исповедуют принцип «зло за зло»*.

Таким образом, мы приходим к выводу, что дилемма порождается симметрической рефлексивной структурой внутреннего мира игрока.

Дилемму заключенного нельзя разрешить, но ее можно объяснить.

 

 

 

Рассмотрим следующий многочлен по негативной формой.

Q=T+(T+Txз}x+(T+Tx+Tx2+Ty)y.

Как обычно, мы предполагаем, что такова система Q с позиции внешнего исследователя. Поставим задачу—сравнить «внутренние миры» персонажей с картиной, лежащей перед исследователем. Для этого построим следующую таблицу. (см. выше)

Пустые клетки второй и третьей строк соответствуют членам, которые присутствуют с позиции внешнего исследователя, но отсутствуют во внутренних мирах соответствующих персонажей. Из таблицы видно, что у персонажей Х и }' есть еще «лишние» члены, которых нет в многочлене с позиции внешнего исследователя: это Тх3 и Тх2.

Условимся особым образом изображать члены, которые «неизвестны» персонажам. Член Тх «неизвестен» персоналу X, поскольку его внутренний мир содержит только два члена Т и Тх3. Условимся этот факт фиксировать следующим образом: Тхх-. Читается это так:

«Тх не лежит перед X».

Аналогично обозначим «неизвестность» персонажу Х остальных элементов:

Тх4х-, Тух-, Тхух-, Тх2ух,Ty2x-

Члены, неизвестные персонажу Y, обозначим соответственно Tx4y, Txyy-, Тх2уу, Ту2у-.

Теперь мы можем дополнить многочлен Q. этими членами и, распространив на х- и у- закон дистрибутивности и вынеся их за скобку, получим

Q*=T+(T+Tx3}x+(T+Tx+Tx2+Ty)y+

+ (Tx4+Ty+Txy+Tx2y+Ty2)x-+ (Тх4+Тху+Тх2у+Ту2)y-.

Легко видеть, что каждый конечный многочлен Q может быть представлен в виде

Q*=T+Q1x+Q2y+Q3x- +Q4y-.

Такая запись позволяет фиксировать не только содержимое «внутренних миров», но и члены, которые отсутствуют во внутреннем мир персонажа, но присутствуют в системе с позиции внешнего исследователя.

Часть многочлена Q*, представляющую собой многочлен и, мы будем называть позитивной формой, сумму Q3x-+Q4y- - соответственно, негативной.

 

Рефлексивный многочлен как способ регистрации ограничений

 

Представим себе такую условную ситуацию. Пусть в некотором городе каждый житель, сидя вечером у камина, самостоятельно догадался, что представление приехавшего цирка, назначенное на завтра, не состоится. И абсолютно уверен в своем прогнозе. После этого по радио было объявлено, что представление отменяется. Спрашивается, получил ли каждый житель города новую информацию из этого сообщения? На первый взгляд кажется, что нет. Ведь каждый и так уже знал, что представление будет отменено. В действительности же получена новая информация. После объявления каждый житель города знает, что каждый житель города знает, что представление отменяется.

Обозначим жителей города символами c1,c2,....ck Жителя города в момент, когда он догадался, что представление отменяется, можно изобразить многочленом

Q=T+Tei

Другие жители вместе с их внутренними мирами не присутствуют в его внутреннем мире.

Используя негативную форму, с позиции внешнего исследователя это можно изобразить так:

Q*=T+Tei+EiTej.ei-

Информация, переданная по радио, «сняла» черточку с e-i и многочлен Q* превратился в многочлен

Q** = Т + Теi + åiTеjei + (T + Ei Теj с)ei'

Итак, мы видим, что публичное объявление известной каждому информации приводит к изменению рефлексивного многочлена; в нем появляются внутренние миры других персонажей с воспринятой информацией.

Рефлексивный анализ не дает нам возможности рассматривать процесс генерации решении как таковой. Он задает лишь рамки, выделяющие «тип информации», который может участвовать в процессе генерации решения.

Когда мы рассматриваем каждого жителя до того как он услышал сообщение по радио, единственное ограничение, которое мы обязаны учитывать,—это отсутствие в его внутреннем мире членов Теj, — сам он «знает», но не учитывает того, что другие могут «знать». Сообщением по радио персонаж переведен в другое состояние. Во внутреннем мире появились члены Теj, но отсутствуют члены вида Tej,ek. Произошло изменение ограничений.

Пусть персонаж Х изображается таким многочленом:

Q=T+(T+Tx)x.

Перейдя к «позитивно-негативной» форме, мы можем записать

Q*=T+(T+Tx)x+Txxx-.

Член Тххх- фиксируя факт, что член Тхх «неизвестен» персонажу (но известен внешнему исследователю), 'показывает, что персонаж не может его «использовать» при осознанном генерировании решения. Персонаж «свободен» лишь в рамках своего внутреннего мира, который изображен 'многочленом Т+T'х.

Предположим, что персонаж совершил акт осознания оператором 1+х:

[Т+(Т+Тх)х)(1+х)=Т+(Т+Т+Тх+Тхх}х.

Ограничение, которое было прежде, снялось: член Тхх «известен» персонажу X, однако ему неизвестен член Тххх. Персонаж стал более свободным, но ограничения не исчезли, а просто изменились.

Рассмотрим теперь, в плане анализа изменения ограничений, «замыкающие операторы». Как мы уже оказали выше, замыкающие операторы, изменяя многочлены, тем не менее оставляют их некоторые очень важные свойства неизменными. Рассмотрим оператор 1+х+ух. Применяя его к многочлену, который представим в виде T+(Q+Qy)x, 'мы снова получим многочлен, который представим подобным образом. Итак, структура, фиксируемая выражением T+(Q+Qy)x инвариантна к применению оператора 1+х+ух. Эту структуру мы можем рассматривать как ограничение более «высокого порядка», чем те, которые фиксируются некоторым конкретным многочленом. Таким образом, замыкающий оператор не снимает определенных структурных ограничений, но конечно меняет ограничения, налагаемые конкретным многочленом. Персонаж, вооруженный лишь одним замыкающим оператором, «замкнут» в классе многочленов, обладающих определенной структурой. Лишь изменение, оператора осознания позволяет ему обрести «свободу» и «уйти» из этого класса многочленов.

Мы можем теперь перейти к более общему понятию акта осознания. Акт осознания — это процедура, изменяющая ограничения. В таком смысле любая содержательно введенная функция, определенная на множестве рефлексивных многочленов и черпающая значения из этого же множества, может рассматриваться как особый оператор осознания. Правда, термин «осознание» мы обязаны будем распространить и на преобразования, характеризующиеся упрощением многочлена. Ограничения при этом усиливаются, а не ослабляются: персонаж теряет часть своей свободы, а не приобретает ее, как в случае работы оператора-множителя.

Другой путь построения рефлексивного анализа.

В первом издании этой книги оператор осознания вводился иначе. Произвольный многочлен, фиксирующий взаимоотношения двух персонажей, можно привести к виду Q=T+Q1x+Q'2.y.

Осознание понималось как отражение всей ситуации одним и персонажей. Пусть, например, акт осознания произвел X. Вся система изменилась, «внутри» персонажа Х оказался многочлен Q, а персонаж Y и плацдарм T остались неизменными. Таким образом, система перешла в состояние

(T+Q1x+Q2y)x+ Q2y+T

Эта процедура напоминает нахождение формальной первообразной и мы обозначили ее соответствующим образом:

intQ(x)=Q1x+C, C=Q2y+T

аналогично

intQ(x)=Q1x+C. C=Q2,y+T; A

intQ(y)=Q2y+C, C=Q1x+T

В качестве константы С выступают члены, не имеющие крайним правым индексом имени персонажа, который производит осознание. В случае, когда осознание производят оба персонажа одновременно,

х у

int(int) Q = Qx + Qу + T.

Вводилась и операция, обратная интегрированию,—нахождение частной производной. Она истолковывалась двояко; с одной стороны, она понималась как .выделение внутреннего мира персонажа, с другой стороны, — как нахождение состояния системы, предшествующего акту осознания (конечно, при условии, что данное состояние было порождено актом осознания в указанном выше смысле). Формально операция дифференцирования определялась так:

дQ/дx(ч)=Q1 , дQ/ду=Q2

 

Если многочлен Q1 представим в виде Q1=T+Q3X+Q4y, то можно найти вторую производную, т.е. извлечь внутренний мир соответствующего персонажа, лежащий внутри уже извлеченного внутреннего мира:

д2Q/ дхдх= Q3 д2Q/дхду=Q4

Процедуру дифференцирования можно проводить до тех пор, пока очередная производная не примет значение T.

Нетрудно видеть, что такое введение оператора осознания приводит нас к очень узкому классу многочленов. Чтобы расширить класс, вводились дополнительные искусственные приемы.

Использование процедуры умножения на многочлен как аналога процесса осознания теперь представляется автору более эффективным. Операция дифференцирования может быть использована и в новом варианте рефлексивного анализа, однако можно ее истолковать лишь как процедуру выделения внутреннего мира персонажа.

 

Глава II. ФОКАЛЬНЫЕ ТОЧКИ И РЕФЛЕКСИВНЫЕ МНОГОЧЛЕНЫ

 

Проделаем мысленный эксперимент. Пусть в «каземате», проекция сверху которого изображена на рис.12, находится узник, а вне каземата — его партнер, который желает освободить узника. Каждый из них в отдельности не может пробить стенку, но если они будут пробивать стенку одновременно навстречу друг другу, те отверстие будет проделано. Представим себе, что пробить стенку можно только в углах 1, 2, 3,4, 5, 6, 7. Пусть контакт в процессе работы и до нее между партнерами невозможен, т.е. ни один из них до конца работы достоверно не знает, какое решение принял его партнер. Как будут вести себя «разумные» партнеры? Задача кажется сравнительно простой, если есть «самое тонкое место»: тогда оба партнера минимизируют расход энергии, но что происходит, если стенка всюду имеет одинаковую толщину? Простейший эксперимент, который может произвести каждый, показывает, что выбор падает на угол 4. В силу каких причин это происходит? Как могут встретиться две «системы» без предварительной конвенции и информационной связи в процессе функционирования? Обратим внимание на то, что системы без рефлексии не могут успешно встречаться в подобных ситуациях, поскольку решение каждого никак не связано с решением партнера. Встреча происходит «не случайно» в узле 4, когда взаимодействуют рефлексирующие системы, имитирующие внутренний мир друг друга

Нам, поскольку мы сами —»рефлексирующие системы», очевидно, что выбирать следует угол 4, так как он «странный».* Но спрашивается, в силу каких причин возникает это стремление к «странному»? Задачи такого рода, связанные со встречей без предварительной договоренности или информационных контактов, рассматривались Т. Шеллингом [29]. Он первым научно осознал тот факт, что встреча, происходит в наиболее странном месте. Такие места Т. Шеллинг назвал «фокальными точками». Он привел целый ряд интересных примеров фокальных точек, однако подлинный логико-психологический механизм возникновения этого феномена остался невыясненным. Казалось бы, наличие рефлексивной цепочки «я думаю, что он думает, что я думаю...» позволит объяснить возникновение фокальной точки. Но этим способом можно объяснить лишь те случаи, когда задано некоторое отношение предпочтения между исходами. Например, если двое пытаются встретиться во время дождя в парке, в котором есть беседка, то действительно, подобная цепочка рассуждений приведет к цели, ибо ее возможно завершить: «я думаю, что он думает, что я думаю, что беседка лучшее убежище от дождя». Однако такое объяснение невозможно в случае с узником, который находится в камере. «Особый угол» не имеет никакого объективного преимущества (или субъективного, например, типа обычая). В этом случае у персонажа не существует отношения предпочтения, независимого от наличия другого персонажа. Поэтому цепочка типа «я думаю, что он думает...» не может быть завершена рациональным обоснованием выбора. Нам представляется, что рефлексивный анализ позволяет в какой-то мере объяснить причины возникновения фокальных точек, поскольку при этом можно регистрировать структуры гораздо более сложные, чем «я думаю, что он думает...»

Структуре «я думаю, что он думает...» соответствуют рефлексивные многочлены типа

 

[T+{T+(T+Ty)]x}y

 

Внутри персонажа Y находится персонаж X, внутри которого находится персонаж Y. Глубина «вложений» может быть произвольной. Для таких простых структур целесообразно специальное изображение. Например, привиденный многочлен можно заменить выражением Y=>X=>Y, которое читается «Y думает, что Х думает, что Y думает», или «Y знает, что Х знает, что Y знает» и т.д. Стрелка указывает на порядок чтения.

Интересно, что такие структуры распадаются на два класса. К первому классу относятся структуры, оканчивающиеся именем персонажа, который проводит рассуждение, например YXYXY. Число индексов в такой строке нечетно. В качестве исходного, наиболее «глубинного», персонаж Y использует свое собственное рассуждение, которое затем имитируется персонажем Х, далее эта имитация имитируется персонажем Y и т.д. Ко второму классу относятся структуры, оканчивающиеся именем другого персонажа, например YXYX.. Число индексов в такой строке четно. В качестве исходного рассуждения персонаж Y использует рассуждение другого персонажа.

Для характеристики «глубины имитации» по отношению к таким структурам можно ввести параметр ранг рефлексии персонажа [11]. Это количество последовательных вложений в данного персонажа других персонажей. Лучшей иллюстрацией вложений является матрешка, в которую вложена другая матрешка, в которую вложена еще одна матрешка, и т.д. Число матрешек, вложенных в данную, и есть «ранг рефлексии» матрешки.

Аналогия с матрешками может быть развита для произвольного рефлексивного многочлена. Каждому многочлену будет соответствовать матрешка, внутри которой рядом лежат несколько «близняшек-матрешек, в каждой из которых может находиться несколько «близняшек», в каждой из которых может находиться несколько «близняшек». Причем число «близняшек внутри каждой матрешки может быть произвольным.

Если теперь мы каждому персонажу поставим в соответствие матрешек определенного цвета, то аналогия будет полной. i

Рассмотрим снова оператор осознания w=1+х+у и формируемые им многочлены

Q=T+(Q+Qy)x.

Мы уже видели, что в антагонистической ситуации этот оператор порождает максиминную стратегию в ситуации «дилеммы заключенного», которую мы анализировали на примере «дилеммы стрелков», этот оператор «порождает» выстрел.

Предположим теперь, что узник, находящийся внутри камеры, изображенной на рис. 12, «оснащен» оператором w=1+x+yx. С его позиции партнер, находящийся снаружи, имитирует любую его мысль. Теперь введем различие между решением и реализацией решения. Решение—элемент внутреннего мира персонажа. Реализация решения—компонента его поведения. Рассуждение, обосновывающее выбор альтернативы, не полностью детерминирует выбор. Рассуждение, опирающееся на часто встречающиеся признаки, при воспроизведении будет давать неоднозначное решение. Рассуждение же, опирающееся на исключительный признак, дает однозначное решение. Пусть, например, шесть углов выкрашены красной краской, а один — зеленой. Рассуждение «я выбрал угол, потому что он красный» при воспроизведении дает шесть равноценных вариантов; а рассуждение «я выбрал угол, потому что он зеленый» дает единственный вариант. Отсюда виден ясный информационный смысл признаков. Если предположить, что узник «ощущает», что любая его мысль одинаково легко имитируется партнером, то преимущество имеет то решение, которому соответствует минимальное число вариантов неразличимых реализации.

Отличие работы оператора w=1+х+ух в условиях конфликта и в условиях, когда персонажи преследуют общую цель, можно пояснить следующим примером. Пусть Х стремится избежать контакта с Y, a Y стремится его настигнуть. Перед Х лежит набор белых и черных пунктов, в произвольном из которых он может укрыться. Мы предполагаем, что он может различать только два признака «черный — белый». Остальные, например, связанные с положением, он не в состоянии выделить. (Представим себе, что кружочки беспорядочно перемещаются). Поэтому пункты одного цвета для него неразличимы. Он может принять лишь два решения:

«я выбираю белый пункт», «я выбираю черный пункт». Поскольку с его позиции противник имитирует любую мысль, то он должен выбрать белый пункт, ибо при этом вероятность того, что его найдет противник, будет меньше. Заметим, что казалось бы универсальная идея укрыться в безликом элементе, принадлежащем подмножеству с большим числом элементов, определяется именно оператором w=1+х+ух. Если бы персонаж Х изображался многочленом вида

Q=T+[T+T(l+x+yx)ny]x,

Рис. 13.

то он принял бы решение укрываться в черном пункте. Действительно, с позиции Х персонажу Y известно, что сам он выступает для Х как «всевидящее око». В силу этого У, (с позиции X) проимитировав рассуждения X, выведет, что Х выберет один из белых пунктов и примет решение искать его в множестве белых пунктов. Проимитировав это рассуждение, Х должен принять решение укрыться в одном из черных пунктов (рис. 13).

Теперь рассмотрим случай, когда Х и У стремятся встретиться на множестве пунктов, изображенных на рис. 13. Х обладает единственным оператором осознания w=1+х+ух. Естественно, что в силу уже проведенных рассуждений Х выберет один из черных пунктов.

Таким образом, «работа» оператора w=1+x+yx в условиях решения общей задачи, когда информационный контакт невозможен, порождает феномен фокальной точки. (В данном примере порождается «фокальное множество», поскольку все черные пункты неотличимы.) Если персонаж Y «устроен» таким же образом, т.е. имеет свой оператор осознания w=1+у+ху, то оба персонажа попадут в одно «фокальное множество». Если это множество состояло бы из одного элемента, то они наверняка бы встретились.

Обратим внимание на любопытное обстоятельство:

каждый из персонажей имеет неадекватное действительности представление о своем партнере (в «действительности» они таковы, какими их видит внешний исследователь).

Фокальные точки и фокальные множества могут пoрождаться не только оператором w=1+х+ух. Рассмотрим персонажа, который изображается в виде

Q-=T+[T(1+x+y)n]x.

С этим многочленом мы уже встречались, разбирая «дилемму заключенного». Такое строение внутреннего мира также может породить фокальную точку.

В силу тождественности партнера самому себе Х полагает, что решение, которое примет он сам автоматически примет его партнер. Если Х должен выбрать один из пунктов на рис. 13, то он выберет черный, поскольку из самого факта выбора черного следует, что и «зеркальный партнер» выберет черный пункт (мы продолжаем предполагать, что Х не способен индивидуализировать пункты одного цвета).

Итак, мы приходим к выводу, что «феномен фокальной точки» порождается специфическими рефлексивными структурами.

Нетрудно построить пример особой ситуации, когда персонаж, с одной стороны, «генерирует» фокальную точку, а с другой стороны — вынужден производить нейтрализацию дедукции. Предположим, что в условия игры, в которой узник и его партнер пробивают стенку навстречу друг другу, введен третий персонаж — надзиратель Z, который решил устроить засаду у одного из углов. Пусть факт возможности засады известен узнику и его сообщнику. Рассмотрим узника X. Чтобы встретиться с партнером, он должен «выбрать» фокальную точку. Но с его позиции этот выбор сразу выводится надзирателем, и возникает противоборствующее стремление уйти из фокальной точки, однако при этом теряется возможность достоверной встречи с партнером. Возникает своеобразная «дилемма беглецов». Она вызывается оператором осознания w=1+x+yx+zx+yzx, который мы рассматривали выше. Этот оператор порождает многочлены вида:

T+[Q+Qy+(Q+Qy)z]x.

Члены Q+Qy порождают фокальную точку, а члены (Q+Qy)z вынуждают нейтрализовывать дедукцию противника.

Мы видим, что рефлексивные системы обладают резервом самоорганизации, который отсутствует у систем Других типов и который позволяет им целесообразно функционировать, не имея информационных контактов друг с другом.

Особый интерес представляет функционирование системы, состоящей из элементов, потоки информации между которыми доступны противостоящему им игроку.

Игрок заинтересован в том, чтобы элементы обменивались информацией: с одной стороны, это дает ему возможность проникать в замыслы противостоящей системы, с другой стороны — отделить враждебные ему элементы от нейтральных. Он может даже поощрять создание коалиций противостоящих себе элементов, чтобы иметь перед собой зримого противника. Но игрок совершенно беспомощен, если противостоящие ему элементы не обмениваются информацией, а совершают синхронное противодействие, используя резерв самоорганизации, присущий рефлексивным системам. У игрока не оказывается ни информации, ни зримого противника.

Хотя никакой предварительной конвенции, чтобы совершать координированные действия, в принципе может и не потребоваться, тем не менее необходимо, чтобы область «признаков» была общей для всех элементов, В противном случае элементы могут генерировать различные фокальные точки [39].

Ситуация с тюремной камерой, вероятно очень похожа на ту, в которой находятся космические цивилизации, не имеющие контакта друг с другом. Когда мы начинаем искать соседей по космосу на волне в (см рис.21), то мы выходим на одну из фокальных точек. Мы считаем, что они давно догадались, что мы будем искать их на этой волне. Они выступают как «мажоранта».

Можно предположить, что рефлексивные процессы являются универсальным механизмом, позволяющие космическим цивилизациям находить друг друга или совершать координированные действия без информационных контактов.

 

Глава III. РЕФЛЕКСИВНОЕ УПРАВЛЕНИЕ

 

Теперь приступим к анализу процессов взаимодействия персонажей, главным образом, в условиях конфликта.

Рассмотрим конфликт, который протекает в рамках рефлексивного многочлена

Q=T+Tx+(T+Tx)y.

Действительностью, которая лежит перед Y, является не только изображение объективного плацдарма, но и отображение той картины плацдарма, которая есть у его противника. Мы будем предполагать, что в рамках такой структуры персонаж Y может отразить цель противника, а также способ решения им задачи - его доктрину.

Рис. 14.

Подобная картина, лежащая перед Y, позволяет ему поставить задачу управления процессом принятия решения X. Это управление осуществляется не в результате прямого навязывания противнику своей воли, а за счет передачи ему «оснований», из которых тот, как бы дедуктивно, выведет предопределенное другим противником решение. Y подключается к «системе отображения» Х и начинает управлять процессом принятия решения. Это мы попытались изобразить на рис. 14.

Процесс передачи оснований для принятия решения одним из персонажей другому мы будем называть рефлексивным управлением [11, 14, 15]. Заметим, что это определение схватывает лишь простейшие случаи феномена, который мы собираемся рассматривать. Любые «обманные движения», провокации, интриги, маскировки, создание ложных объектов и вообще ложь произвольного типа представляют собой рефлексивное управление.

Ложь может иметь сложное строение: например, передача противнику правдивой информации, чтобы он, считая ее ложной, принял соответствующее решение.


Поделиться:

Дата добавления: 2015-04-15; просмотров: 138; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты