КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Статистика речи и автоматический анализ текстаНазвание «квантитативная лингвистика» достаточно условно, хотя и довольно широко используется в современной научной литературе. Оно характеризует междисциплинарное направление в прикладных исследованиях, в котором в качестве основного инструмента изучения языка и речи используются количественные или статистические методы анализа. Иногда квантитативная (или количественная) лингвистика противопоставляется комбинаторной лингвистике. В последней доминирующую роль занимает «неколичественный» математический аппарат — теория множеств, математическая логика, теория алгоритмов и т.д. Применение количественных методов при описании функционирования языка мало чем отличается от использования аналогичного инструментария в естественных и гуманитарных науках. Привлечение методов измерения и подсчета языковых реализаций позволяет, однако, существенно модифицировать представление о языковой системе и возможностях ее функционирования. В этом отношении квантитативная лингвистика оказывается важнейшим фактором, влияющим на лингвистическую теорию. Например, в сфере грамматики теоретическая лингвистика, как правило, ограничивается констатацией существования в русском языке системы падежей. Со структурной точки зрения этого, быть может, и достаточно. Между тем за рамками обсуждения остается весьма существенная информация о том, как часто используются различные падежи, какова динамка использования различных падежей с течением времени. Исследование такого рода позволило бы выявить тенденции развития падежной системы и на основе этого даже сформулировать гипотезы о будущем состоянии грамматической системы русского языка. С теоретической точки зрения использование статистических методов в языкознании позволяет дополнить структурную модель языка вероятностным компонентом, то есть создать структурно-вероятностную модель, обладающую значительным объяснительным потенциалом. Эту сторону использования количественных методов следует считать приложением статистики в языкознании. К моделям такого рода относится, например, «модель жизненного цикла слова», предложенная А. А. Поликарповым. Проведенный им квантитативный анализ показал, что в достаточно значительной временной перспективе имеется явная тенденция к увеличению степени абстрактности значений у многозначного слова — чем позже возникает значение, тем оно более абстрактно. Разработанная количественная модель позволяет делать интересные предположение об относительном «возрасте» различных частей речи, тенденций развития лексической системы языка и т.д. Лингвистический мониторинг функционирования языка. Задача лингвистического мониторинга заключается в выявлении общих особенностей функционирования языковой системы в конкретном типе дискурса (научном, политическом дискурсе, текстах средств массовой информации и т.д.). В качестве предмета лингвистического мониторинга могут выступать такие феномены естественного языка, как типы языковых ошибок, сфера иностранных заимствований, новые слова и значения, новые (креативные, творческие — не конвенциональные) метафоры, тематическое распределение лексики (например, лексика временных и пространственных отношений, лексика выражения чувств и эмоций, спортивная лексика и т.д.), особенности использования в текстах тех или иных грамматических форм, синтаксических конструкций. Технология лингвистического мониторинга основывается на двух важнейших предпосылках: во-первых, на регулярности и периодичности анализируемых данных, и, во-вторых — на достаточно большом объеме привлекаемого материала, на репрезентативности выборки данных. В силу этого лингвистический мониторинг невозможен без соответствующего компьютерного обеспечения. Использование компьютерной технологии позволяет давать оценку исследуемому феномену, выявляя его распределение по времени, по источникам, авторам и т.д. Информация о статистических закономерностях функционирования языковой системы лежит в основе некоторых методик анализа данных, разрабатываемых в политической лингвистике. К ним относится, в частности, методика контент-анализа, используемая для выявления структуры и состояния общественного сознания. Авторизация/атрибуция текста. Проблема авторизации текста относится к числу классических проблем филологического исследования. Часто она рассматривается в рамках «количественной стилистики» — стилеметрии. Авторизация включает как литературную, так и лингвистическую составляющую. В. В. Виноградов в книге «Проблема авторства и теория стилей» сформулировал типологию факторов атрибуции. К субъективным факторам он относит: а) субъективно-коммерческие; б) субъективно-конъюнктурные; в) субъективно-эстетические; г) субъективно-психологические; д) субъективно-идеологические факторы. Есть и объективные факторы: а) документально-рукописные (археологические); б) исторические (биографии, свидетельства современников); в) историко-идеологические и сопоставительно-идеологические; г) историко-стилистические; д) художественно-стилистические; е) лингвостилистические. Однако чисто филологическое направление авторизации не позволяет построить объективные операциональные критерии анализа и атрибуции текста. К сожалению, большинство факторов, на которые обращает внимание В. В. Виноградов, плохо формализуемы. Иными словами, разные эксперты, используя одни и те же факторы, могут сделать совершенно различные выводы. Перспектива объективизации экспертного знания была обнаружена в использовании количественных, статистических методов анализа текста. Пионером в этой области стал Н. А. Морозов, перу которого принадлежит опубликованная в 1915 г. работа «Лингвистические спектры. Средство для отличия плагиатов от истинных произведений того или другого известного автора. Стилеметрический этюд». Существенно, что в квантитативном анализе Морозов предлагал опираться не на тематически связанную лексику — слова, определяемые спецификой описываемого материала, его предметной и проблемной ориентацией, — а на служебные слова и слова тематически нейтральные. Дело в том, что именно особенности употребления служебных слов, лексем с общей семантикой, не привязанной к тематике художественного произведения, формируют авторский стиль и практически не поддаются имитации. Компьютерное моделирования языка и речи. Другая важная область прикладного использования знаний о частоте использования тех или иных языковых структур — компьютерная лингвистика. Многие компьютерные программы, связанные с функционированием языка, используют алгоритмы, основывающиеся на данных о частоте употребления фонем, морфем, лексических единиц и синтаксических конструкций. Например, программы автоматической коррекции орфографии содержат словари, как правило, только наиболее частотных лексем. Дешифровка кодированного текста. В процессе дешифровки также могут использоваться данные о частоте употребления графем, морфем и слов, а также их взаимном расположении. К настоящему времени разработаны продуктивные алгоритмы дешифровки, основанные на частоте и дистрибуции элементов кодированного текста; ср. деши-Фровочные алгоритмы Б. В. Сухотина, статистико-комбинаторный метод Н.Д.Андреева. Близки к задачам дешифровки формальные процедуры «открытия» морфемного состава неописанного языка, предложенные 3. Харрисом.
|