Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Анаэробное сбраживание




 

При анаэробном сбраживании органические вещества разлагаются в отсутствие кислорода. Этот процесс включает в себя два этапа. На первом этапе сложные органические полимеры (клетчатка, белки, жиры и др.) под действием природного сообщества разнообразных видов анаэробных бактерий, разлагаются до более простых соединений: летучих жирных кислот, низших спиртов, водорода и окиси углерода, уксусной и муравьиной кислот, метилового спирта. На втором этапе метанообразующие бактерии превращают органические кислоты в метан, углекислый газ и воду.

 

Первичные анаэробы представлены разнообразными физиологическими группами бактерий: клеткоразрушающими, углеродосбраживающими (типа маслянокислых бактерий), аммонифицирующими (разлагающими белки, пептиды, аминокислоты), бактериями, разлагающими жиры и т.д. Благодаря этому составу, первичные анаэробы могут использовать разнообразные органические соединения растительного и животного происхождения, что является одной из важнейших особенностей метанового сообщества. Тесная связь между этими группами бактерий обеспечивает достаточную стабильность процесса.

 

Метановое брожение протекает при средних (мезофильное) и высоких (термофильное) температурах. Наибольшая производительность достигается при термофильном метановом брожении. Особенность метанового консорциума позволяет сделать процесс брожения непрерывным. Для нормального протекания процесса анаэробного сбраживания необходимы оптимальные условия в реакторе: температура, анаэробные условия, достаточная концентрация питательных веществ, допустимый диапазон значений рН, отсутствие или низкая концентрация токсичных веществ.

 

Температура в значительной степени влияет на анаэробное сбраживание органических материалов. Наилучшим образом сбраживание происходит при температуре 30-40оС (развитие мезофильной бактериальной флоры), а также при температуре 50-60оС (развитие термофильной бактериальной флоры). Выбор мезофильного или термофильного режима работы основывается на анализе климатических условий. Если для обеспечения термофильных температур необходимы значительные затраты энергии, то более эффективной будет эксплуатация реакторов при мезофильных температурах.



 

Наряду с температурными условиями на процесс метанового брожения и количество получаемого биогаза влияет время обработки отходов

 

При эксплуатации реакторов необходимо проводить контроль за показателем рН, оптимальное значение которого находится в пределах 6,7-7,6. Регулирование этого показателя осуществляется путем добавления извести.

 

При нормальной работе реактора получаемый биогаз содержит 60-70% метана, 30-40% двуокиси углерода, небольшое количество сероводорода, а также примеси водорода, аммиака и окислов азота. Наиболее эффективны реакторы, работающие в термофильном режиме при 43-52оС. При продолжительности обработки навоза 3 дня выход биогаза на таких установках составляет 4,5 л на каждый литр полезного объема реактора. В исходную массу для интенсификации процесса анаэробного сбраживания навоза и выделения биогаза добавляются органические катализаторы, которые изменяют соотношение углерода и азота в сбраживаемой массе (оптимальное соотношение C/N=20/1-30/1). В качестве таких катализаторов используются глюкоза и целлюлоза.

 

Получаемый при брожении биогаз имеет теплоту сгорания 5340-6230 ккал/м3 (6.21-7.24 кВт.ч/ м3).



 

В бродильных камерах необходимо проводить энергичное перемешивание для предупреждения образования в верхней части слоя всплывающего вещества. Это значительно ускоряет процесс брожения и выход биогаза. Без перемешивания для получения такой же производительности объем реакторов должен быть значительно увеличен. Отсюда следствие - большие затраты и удорожание установки.

 

Перемешивание осуществляется:

механическими мешалками различной формы или погружными насосами с приводом от электродвигателя,

гидравлическими насадками за счет энергии струи, перекачиваемого насосом сбраживаемого навоза, или рециркуляцией,

избыточным давлением биогаза, пропускаемого через барботер или трубку, расположенную в нижней части редуктора.

 

Остаток, образующийся в процессе получения биогаза, содержит значительное количество питательных веществ и может быть использован в качестве удобрения. Состав остатка, полученного при анаэробной переработке животноводческих отходов, зависит от химического состава исходного сырья, загружаемого в реактор. В условиях, благоприятных для анаэробного сбраживания, обычно разлагается около 70% органических веществ, а 30% содержится в остатке.

 

Основное преимущество анаэробного сбраживания заключается в сохранении в органической или аммонийной форме практически всего азота, содержащегося в исходном сырье.

 

Метод анаэробного сбраживания наиболее приемлем для переработки животноводческих отходов с точки зрения гигиены и охраны окружающей среды, так как обеспечивает наибольшее обеззараживание остатка и устранение патогенных микроорганизмов.



 

Жидкая фаза навоза после анаэробной переработки обычно отвечает требованиям, предъявляемым к качеству сточных вод органами охраны природы. Отработанная жидкая органическая масса поступает через выгрузочную камеру в резервуар сброженной массы, а оттуда перекачивается в цистерны, с помощью которых вносят на поля обычную навозную массу.

Биоконверсия органических отходов

 

Технология микробиологической биоконверсии отходов предназначена для переработки сырьевых компонентов, не используемых в традиционном кормопроизводстве, в высококачественные углеводно-белковые кормовые добавки и комбикорма. Технология микробиологической биоконверсии предназначена для переработки отходов сельского хозяйства, пищевой и зерноперерабатывающей промышленности в кормовые добавки и комбикорма.

 

Суть технологии биоконверсии заключается в следующем: сырьевые компоненты (отходы) содержащие сложные полисахариды – пектиновые вещества, целлюлозу, гемицеллюлозу подвергаются воздействию комплексных ферментных препаратов, содержащих пектиназу, гемицеллюлазу и целлюлазу. Ферменты представляют собой очищенный внеклеточный белок и способны к глубокой деструкции клеточных стенок и отдельных структурных полисахаридов, т.е. осуществляется расщепление сложных полисахаридов на простые с последующим построением на их основе легко усвояемого кормового белка.

 

В качестве исходных сырьевых компонентов могут быть использованы следующие отходы:

 

- растительные компоненты сельскохозяйственных культур: стебли зерновых и технических культур, корзинки и стебли подсолнечника, льняная костра, стержни кукурузных початков, картофельная мезга, трава бобовых культур, отходы сенажа и силоса, отходы виноградной лозы, чайных плантаций, стебли табака.

 

- отходы зерноперерабатывающей промышленности: отруби, отходы при очистке и сортировке зерновой массы (зерновые отходы), зерновая сорная примесь, травмированные зерна, щуплые и проросшие зерна, семена дикорастущих растений, некондиционное зерно.

 

- отходы консервной, винодельческой промышленности и фруктовые отходы: кожица, семенные гнезда, дефектные плоды, вытерки и выжимки, отходы винограда, отходы кабачков, обрезанные концы плодов, жмых, дефектные кабачки, отходы зеленого горошка (ботва, створки, россыпь зерен, битые зерна, кусочки листьев, створки), отходы капусты, свеклы, моркови, картофеля.

 

- отходы сахарной промышленности: свекловичный жом, меласса, рафинадная патока, фильтрационный осадок, свекловичный бой, хвостики свеклы.

 

- отходы пивоваренной и спиртовой промышленности: сплав ячменя (щуплые зерна ячменя, мякина, солома и др. примеси), полировочные отходы, частицы измельченной оболочки, эндосперма, битые зерна, солодовая пыль, пивная дробина, меласса, крахмалистые продукты (картофеля и различных видов зерна), послеспиртовая барда, бражка.

 

- отходы чайной промышленности: чайная пыль, сметки, волоски, черешки.

 

- отходы эфирно-масличной промышленности: отходы травянистого и цветочного сырья.

 

- отходы масло – жировой промышленности: подсолнечная лузга, хлопковая шелуха.

 

- отходы кондитерской и молочной промышленности.

 

Таким образом, любое растительное сырье и его производные, как лигноцеллюлозный источник, доступны для микробиологической биоконверсии в углеводно-белковые корма и кормовые добавки.

 

В процессе биоконверсиив некондиционных компонентах уничтожаются болезнетворная микрофлора, яйца гельминтов, возбудители тяжелых заболеваний (бруцеллез, туберкулез, холера, тиф и др.), а также и вредные паразитирующие простейшие (аскариды, солитеры и др.). При этом кормовая ценность некондиционного сырья после соответствующей обработки превышает кормовую ценность кондиционных аналогов в 1,4-1,8 раз.

 

После завершения процесса биоконверсии конечным продуктом является кормовая добавка – углеводно-белковый концентрат (УБК), который приобретает кормовые свойства в 1,8-2,4 раза превосходящие фуражное зерно хорошего качества, а также обладает рядом существенных и необходимых свойств, которыми не обладает традиционное зерновое сырье.

 

Ключевым элементом технологической цепи является биореактор, в котором и осуществляется процесс микробиологической биоконверсии отходов в корма. Реакторы являются универсальными и позволяют работать с любым сырьем и получать различные кормовые добавки. Технология предусматривает круглогодичный режим работы предприятия, низкие требования к квалификации большинства рабочих, малые энергетические затраты. Технология – экологически безопасная, не имеет сточных вод и выбросов.

 

Влажная (55%) смесь различных отходов загружаются в биореактор. С момента загрузки сырья, в биореакторе процесс микробиологической биоконверсии протекает в течение 4-6 дней (в зависимости от желаемых зоотехнических параметров конечной продукции). В результате получается влажная кормовая добавка – углеводно-белковый концентрат (УБК). Затем ее сушат до влажности 8 – 10 % и измельчают. После измельчения концентрат можно использовать для производства комбикормов, где в качестве основного компонента используется УБК (65 – 25% в зависимости от рецепта и целевого назначения комбикорма).

 

Технологическая схема производственного комплекса по микробиологической переработке растительных отходов в корма

 

1 – прием сыпучего и влажного сырья; 2 – прием жидкого сырья; 3 – бункеры-дозаторы; 4 – смеситель; 5 – био-реактор; 6 – компрессор; 7 – парогенератор; 8 – сушилка; 9 – измельчитель; 10 – отгрузка в мешки.

 


Дата добавления: 2015-04-16; просмотров: 63; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты