КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ГЛАВА 14.
ния солнечной энергии; регенерации кофакторов, принимающих участие в промышленных ферментативных процессах; синтеза специфических химических соединений, требующего участия Н2 в качестве восстановителя; для удаления трития из воды, которая использовалась для охлаждения реакторов атомных электростанций; для синтеза Н2 из органических отходов; получения водородно-кислородных топливных ячеек. Однако, несмотря на то что уже идентифицировано и охарактеризовано более дюжины генов гидрогеназ, пока ни один из них не использовался для крупномасштабного синтеза этих ферментов. Образование клубеньков Конкуренция среди организмов, образующих клубеньки Одна из основных задач сельскохозяйственной биотехнологии — создание с помощью методов генной инженерии штаммов Rhizobium, которые повышали бы урожайность растений более эффективно, чем природные штаммы. Многие имеющиеся на рынке штаммы-инокуляты -превосходные азотфиксаторы — были созданы путем мутагенеза и последующего отбора, однако они в недостаточной степени стимулируют образование клубеньков на корнях растения-хозяина в условиях конкуренции с природными штаммами Rhizobium, уже присутствующими в почве. И наоборот, многие природные штаммы с успехом выдерживают конкуренцию с лабораторными штаммами, но малоэффективны в отношении фиксации азота. Таким образом, для того чтобы можно было реально использовать имеющиеся на рынке инокулирующие штаммы, необходимо либо повысить их способность образовывать клубеньки, либо устранить природные штаммы Rhizobium. Были проведены исследования, направленные на определение генетической основы «конкурентоспособности» природных штаммов, с тем чтобы затем попытаться ввести соответствующие гены в штаммы-инокуляты. Манипуляции с генами образования клубеньков Для идентификации генов образования клубеньков (nod-генов)вновь использовали генетическую комплементацию. Не способный образовывать клубеньки (Nod~) мутантный штамм R. meliloti трансформировали банком клонов хромосомной ДНК R. meliloti дикого типа и выделяли колонии, приобретшие способность образовывать клубеньки на корнях люцерны (рис. 14.6). Стратегия заключалась в следующем. 1, С помощью частичного гидролиза ДНК R. meiiloti рестриктазой EcoRIи встраивания фрагментов длиной до 40 т. п. н. в уникальный EсоRI-сайт космиды рLАFR1 с широким кругом хозяев был создан банк клонов хромосомной ДНК R. meliloti дикого типа (Nod+). 2, Рекомбинантные плазмиды упаковали в частицы фага λ, ввели в Е. coli, a затем перенесли в клетки Nod~-штамма R. meliloti при помощи конъюгации. Вектор содержал ген устойчивости к тетрациклину, который можно было использовать как селективный маркер и в случае Е. coli, и в случае R. meliloti. 3, После конъюгации суспензии, содержащие от 200 до 300 трансформированных клеток R. meliloti, проверяли на способность инициировать образование клубеньков у стерильных растений люцерны. Ожидалось, что этой способностью будут обладать только транс- Бактерии,стимулирующие рост растений 317
318 ГЛАВА 14
форманты, которые несут и экспрессируют ген, комплементирующий дефект образования клубеньков в клетках R, meliloti. 4. Из клубеньков выделили бактерии, вызывающие образование клубеньков, а из бактерий -вектор, несущий комплементирующий ген. Содержащую этот ген большую вставку переклонировал и и провели дальнейший анализ, 5. Идентифицированный ген образования клубеньков использовали в качестве зонда для обнаружения фланкирующих его участков хромосомной ДНК R. meliloti в геномной библиотеке. В результате этих весьма трудоемких экспериментов удалось охарактеризовать весь набор генов образования клубеньков R. meliloti. Детальные биохимические и генетические исследования показали, что образование клубеньков и его регуляция — это сложные процессы, в которых задействованы продукты большого количества генов (примерно 20; табл. 14.6). Одни из этих генов высококонсервативны (одинаковы у всех микроорганизмов, образующих клубеньки), другие видоспецифичны. Их можно сгруппировать в три отдельных класса: консервативные, видоспецифичные и регуляторный ген nodD. Так, nodABC-гены одинаковы у всех видов Rhizobium и структурно взаимозаменяемы; у большинства видов они образуют один оперон. Установлено, что процесс образования клубеньков включает несколько этапов. Сначала продукт конститутивно экс премирующегося гена nodD связывается с молекулой флавоноида, секретируемого клетками корней растения-хозяина. Флавоноиды — это растительные фенольные соединения, структурную основу которых составляют два ароматических кольца, соединенных друг с другом трехуглеродным мостиком. Они выполняют в растениях разные функции, в частности отвечают за их пигментацию и участвуют в защите от грибов и насекомых. Связывание флавоноидов с белком NodD -
Бактерии, стимулирующие рост растений319
один из ключевых моментов идентификации растения-хозяина, поскольку каждый вид Rhizobium узнает ограниченное число флавоноидных структур, а каждая разновидность растений синтезирует свой специфический набор этих молекул. Одни штаммы, например R. leguminosarum biovar (bv.) trifolii, имеют очень узкий круг хозяев, поскольку узнают только несколько видов флавоноидов, а у других штаммов, например у NGR234 Rhizobium sp., круг хозяев очень широк. Присоединение молекул флавоноида активирует белковый продукт NodD, по-видимому, вызывая его конформационное изменение. Далее комплекс флавоноид—NodD связывается с промоторным участком генов образования клубеньков, называемым nod-блоком. Этот участок расположен перед всеми генами образования клубеньков, кроме гена nodD, и запускает их транскрипцию. Гены nodABC кодируют белки, которые вызывают набухание и скручивание корневых во-
|