КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Основные величины, характеризующие синусоидальные ток, напряжение и ЭДСЭтими основными величинами являются: - мгновенное значение; - амплитудное значение; - начальная фаза; - действующее значение; - среднее значение; - комплекс действующего или амплитудного значения и др. 3.1.1 Мгновенное значение. Мгновенное значение величины а показывает закон ее изменения и записывается в виде: (3.1) где – амплитуда (максимальное значение) величины; – угловая частота, рад/с; t– текущее значение времени, с; – начальная фаза. Мгновенные значения тока i, напряжения и или ЭДС е записываются в виде: (3.2) (3.3) (3.4) Аргумент синуса называется фазой. Угол равен фазе в начальный момент времени t = 0 и поэтому называется начальной фазой. Угловая частота связана с периодом T и частотой f =1/Tформулами: или (3.5) Частота f равная числу колебаний в 1с, измеряется в герцах (Гц). При f =50 Гц имеем = 314 рад/с. С учетом (3.5) формула (3.1) может иметь вид: (3.6) На рисунке 3.1 изображены графики синусоидальных токов одинаковой частоты, но с различными амплитудами и начальными фазами:
По оси абсцисс отложено время t и величина , пропорциональная времени и измеряемая в радианах. Рисунок 3.1. – График синусоидальных токов одинаковой частоты, но с различными амплитудами и начальными фазами
Начальный фазный угол отсчитывается от начала синусоиды, т.е. от момента перехода синусоиды от отрицательных к положительным значениям до момента времени t = 0 (начало координат). При начало синусоиды сдвинуто влево, а при – вправо от начала координат. Если у нескольких синусоидальных функций, изменяющихся с одинаковой частотой, начала синусоид не совпадают, то говорят, что они сдвинуты друг относительно друга по фазе. Сдвиг фаз измеряется разностью фаз, которая равна разности начальных фаз. На рисунке 3.1 , т.е. ток i1 опережает по фазе ток i2 на угол , или, что тоже самое, ток i2 отстает по фазе от тока i1 на угол . Если у синусоидальных функций одной частоты одинаковые начальные фазы, то говорят, что они совпадают по фазе; если разность их фаз равна, то говорят, что они противоположны по фазе (в противофазе). И, если разность их фаз равна то говорят, что они находятся в квадратуре. Наибольшее распространение в электротехнике получил синусоидальный ток частотой 50 Гц, которая принята за стандартную. В США стандартной является частота f = 60 Гц. Диапазон частот, применяемых на практике синусоидальных токов и напряжений, очень широк: от долей герца, например, в геологоразведке, до десятков тысяч мегагерц (МГц) в радиолокации. Синусоидальные токи и напряжения низких частот (до нескольких килогерц) получают с помощью синхронных генераторов, в которых используется принцип получения синусоидального напряжения путем вращения витка с постоянной угловой скоростью в однородном магнитном поле. Этот принцип основан на явлении электромагнитной индукции, открытом в 1831 году М.Фарадеем. Синусоидальные токи и напряжения высоких частот (ВЧ) получают с помощью ламповых или полупроводниковых генераторов. Источники синусоидальной ЭДС (источники синусоидального напряжения) обозначают на схемах с помощью условных обозначений (рис.3.2, а, б) или только показывают напряжение между зажимами источника (рис.3.2,в), т.к. в большинстве случаев принимают источники идеальными и ввиду равенства нулю их внутреннего сопротивления имеем e=u, Ė=Ů и т.д.
Рисунок 3.2. – Условные обозначения идеальных источников ЭДС 3.1.2 Действующее и среднее значения синусоидальных токов и напряжений. Согласно закону Джоуля-Ленца тепловая энергия Q, выделяемая в резисторе с сопротивлением R при протекании по нему постоянного тока I0 в течение промежутка времени t равна: (3.7) Для синусоидального тока формулу (3.7) можно применить лишь для определения тепловой энергии dQ, выделившейся в резисторе с сопротивлением R за бесконечно малый промежуток времени dt, в течение которого силу тока iможно считать не изменяющейся: (3.8) За период времени Т выделившаяся энергия: (3.9) Пусть , тогда: . Введем величину , называемую действующим значением синусоидального тока, и, подставив ее в последнее выражение, получим: (3.10) Сопоставив формулу (3.10), полученную для синусоидального тока, с формулой (3.7), справедливой для постоянного тока, делаем вывод: Действующее значение синусоидального тока равно такому значению постоянного тока, который за один период выделяет в том же резисторе такое же количество тепла, как и синусоидальный ток. Аналогично существуют понятия действующих значений синусоидальных напряжений и ЭДС: и (3.11) Из формул (3.9) и (3.10) получаем: (3.12) В силу (3.12) действующее значение синусоидального тока часто называют среднеквадратичным или эффективным значениями. Действующие значения токов и напряжений показывают большинство электроизмерительных приборов (амперметров, вольтметров). В действующих значениях указываются номинальные токи и напряжения в паспортах различных электроприборов и устройств. Под средним значением синусоидального тока понимают его среднее значение за полпериода: (3.13) т.е. среднее значение синусоидального тока составляет от амплитудного значения. Аналогично, 3.1.3 Изображение синусоидальных токов, напряжений и ЭДС комплексными числами и векторами. Синусоидально изменяющийся ток i изображается комплексным числом: (3.14) Принято изображение тока находить для момента времени t = 0: (3.15) Величину называют комплексной амплитудой тока или комплексом амплитуды тока. Под комплексом действующего значения тока или под комплексом тока понимают частное от деления комплексной амплитуды тока на : (3.16) Под комплексами напряжения и ЭДС понимают подобные выражения
Рисунок 3.3. - Изображение синусоидального тока на комплексной плоскости вектором
Комплексы тока, напряжения и ЭДС изображаются также на комплексной плоскости векторами. Например, на рисунке 3.3 изображен вектор . При этом угол отсчитывается от оси +1 против часовой стрелки, если . Из рисунка 3.3 следует, что комплекс тока (так же, как комплекс напряжения и ЭДС) можно представить а) вектором ; б) комплексным числом в показательной, алгебраической и тригонометрической формах: (3.17) Пример 3.1Ток . Записать выражение для комплексной амплитуды этого тока. Решение.В данном случае Следовательно, Пример 3.2Комплексная амплитуда тока . Записать выражение для мгновенного значения этого тока. Решение.Для перехода от комплексной амплитуды к мгновенному значению надо умножить на и взять коэффициент при мнимой части от полученного произведения: Пример 3.3Записать выражение комплекса действующего значения тока для примера 3.1. Решение.
|