Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Оптоэлектронные приборы




Оптоэлектроника использует оптические и электронные явления в веществах и их взаимные связи для передачи, обработки и хранения информации. Элементной базой оптоэлектроники являются оптоэлектронные приборы — оптроны.

Оптроном называется устройство, состоящее из связанных между собой оптически (посредством светового луча) светоизлучателя и фотоприемника и служащее для управления и для передачи информации.

Оптрон представляет собой единую конструкцию, состоящую из источника и приемника излучения, связанных между собой оптическим каналом. Структурная схема оптрона приведена на рис. 8.8.

Рис.8.8. Структурная схема оптрона

Входной сигнал, например электрический ток Iвх, преобразуется в светоизлучателе СИ в световой поток Ф , энергия которого пропор­циональна входному сигналу. По оптическому каналу ОК световой поток направляется в фотоприемник ФП, где преобразуется в пропорциональное световому потоку значение выходного электрического тока Iвых. С помощью устройства управления оптическим каналом УОК можно управлять световым потоком путем изменения физических свойств самого оптического канала.

Таким образом, в оптронах осуществляется двойное преобразование энергии: электрической в световую и световой снова в электрическую. Это придает оптронам ряд совершенно новых свойств и позволяет на их основе создавать электронные устройства с исключительно своеобразными параметрами и характеристиками. Так, применение оптронов позволяет осуществить почти идеальную электрическую развязку между элементами устройства (сопротивление до 1016 Ом, проходная емкость до 10-4 пФ). Кроме того, могут быть эффективно использованы такие свойства оптронов, как однонаправленность информации, отсутствие обратной связи с выхода на вход, высокая помехозащищенность, широкая полоса пропускание (от нуля до сотен и даже тысяч мегагерц), совместимость с другими (полупроводниковыми) приборами. Это дает возможность использовать оптроны для модулирования сигналов, измерений в высоковольтных цепях, согласования низкочастотных цепей с высокочастотными и низкоомных с высокоомными.

К недостаткам оптронов следует отнести зависимость их параметров от температуры, низкие КПД и коэффициент передачи.

Рисунок 8.9. Устройство оптрона: 1 — выводы: 2 — фотоприемник: 3 — корпус; 4 — оптическая среда; 5 — светодиод

 

Устройство оптрона показано на рис.8.9 В качестве излучателей в оптронах используют обычно светодиоды на основе арсенида-фосфида галлия GaAsP или алюминий-арсенида галлия GaAlAs, характеризующиеся большой яркостью, высоким быстродействием и длительным сроком службы. Кроме того, они хорошо согласуются по спектральным характеристикам с фотоприемниками на основе кремния. В качестве фотоприемников могут использоваться фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Фотодиоды и фототранзисторы как приемники излучения получили в оптронах наибольшее распространение, поскольку по своим характе­ристикам и параметрам они могут работать совместно с интегральными микросхемами. Фототиристоры широко применяются в оптронах в качестве ключевых усилителей мощности, управляемых световым излучением. Передача светового излучения в оптронах осуществляется через оптический канал, роль которого могут играть различные среды. Назначение оптического канала — передача максимальной световой энергии от излучателя к приемнику. Передающей средой могут быть воздух, различные иммерсионные среды, а также оптические световоды длиной 1 м и более. Световолоконные оптические линии связи позволяют довести пробивное напряжение изоляции между входом и выходом оптрона до 150 кВ, что дает возможность применять оптроны для измерений в высоковольтных цепях.

Входными параметрами оптронов являются: номинальный вход­ной ток светодиода в прямом направлении Iвх.ном и падение напря­жения на нем в прямом направлении Uвх при номинальном значении входного тока; входная емкость Свх в заданном режиме; максимально допустимый входной ток Iвх.макс; максимально допустимое обратное напряжение на входе Uвх.обр.макс.

Выходными параметрами оптронов являются: максимально допус­тимое обратное напряжение Uвх.обр.макс , прикладываемое к выходу; максимально допустимый выходной ток Iвых.макс; выходная емкость Свых; световое Rсв и темновое Rтвыходные сопротивления (для фоторезисторных оптронов).

Из передаточных параметров исходными являются коэффициент передачи тока КI =(Iвых / Iвх)100, либо дифференциальный коэффици­ент передачи тока КI д = (dIвых / dIвх)100, выраженные в процентах.

Быстродействие оптрона оценивают при подаче на его вход прямоуголь­ного импульса по времени задержки tзд от момента подачи импульса до момента достижения выходным током значения 0,1 Iвых.обр.макс, а также по времени нарастания tнар выходного тока от 0,1 до 0,9 его максимального значения. Суммарное время задержки и нарастания называют временем включения tвкл. Быстродействие фотоприемника характеризуется его частотными свойствами, т.е. такой частотой синусоидально модулированно­го светового потока, при которой чувствительность фотоприемника вследствие инерционности уменьшается в раз.

Приведем краткое описание некоторых типов наиболее распространенных промышленных оптронов.

Фотодиодный оптрон.Условное графическое обозначение его приведено на рис. 8.10,а. В качестве излучателя используется светодиод на основе арсенида галлия.

В качестве фотоприемников в диодных оптронах используются кремниевые фотодиоды, которые хорошо согласуются по спектральным характеристикам и быстродействию с арсенид-галлиевыми светодиодами.

Коэффициент передачи тока диодного оптрона мал (KI = 1,0 1,5%), однако диодные оптроны являются самыми быстродействующими.

Как элемент электрической цепи фотоприемник диодного оптрона может работать в двух режимах: фотопреобразователя с внешним источни­ком питания и фотогенератора без внешнего источника питания.

Если учесть зависимость светового потока светодиода оптрона от тока Iвх через светодиод, то можно найти зависимость тока Iн нагрузочного резистора Rн или напряжения Uн на нем от входного тока оптрона, т.е. Iн = f(Iвх) или Uн = φ (Iвх).

Надо учитывать, что для передачи максимальной энергии требуется согласование нагрузочного резистора с выходным сопротивлением оптрона.

Фототранзисторный оптрон(рис. 8.10, б).По сравнению с фотодиодным оптроном в качестве фотоприемника в нем используется кремниевый фототранзистор. Являясь усилителем базового тока, фототранзистор имеет существенно более высокую чувствительность, чем фотодиод, поэтому коэффициент передачи тока фототранзисторного оптрона KI = 50 100 %, а оптрона с составным фототранзистором – до 800% и более.

 

Рисунок 8.10. Условные графические обозначения оптронов: фотодиодного (а), фототранзисторного (б), фоторезисторного (в), фототиристорного (г)

 

Недостатком фототранзисторов является то, что они по сравнению с фотодиодами гораздо более инерционны и имеют быстродействие 10-4 – 10-5с.

Фоторезисторный оптрон(рис.8.10,в).В качестве фотоприемника в оптронах иногда используют фоторезисторы на основе селенида или сульфида кадмия (CdSe,CdS), а в качестве излучателя — спектрально согласующиеся с ними светодиоды на основе фосфида или арсенида-фосфида галлия (GaP, GaAsP). Быстродействие фоторезисторных оптронов целиком определяется быстродействием фотоприемника, которое составляет 100—200 мкс.

Фототиристорный оптрон(рис. 8.10,г) включает в себя фототиристор в качестве фотоприемника. Быстродействие фототиристорного оптрона определяется временем выключения фототиристора, в течение которого прибор переходит из открытого состояния в закрытое, оно составляет десятки микросекунд.

В зависимости от типа фотоприемника оптроны могут применяться в электронных устройствах для переключения, преобразования, согласования, модуляции и т.д. Они могут использоваться также в качестве малогабаритных импульсных трансформаторов, реле для коммутации напряжений и токов, в автогенераторах, цепях обратной связи и т.д.

Оптроны с открытым оптическим каналом служат в качестве раз­личных датчиков (перемещения, «края объекта» и др.). В устройствах передачи информации часто применяют оптоэлектронные интегральные микросхемы, в которых в одном корпусе объединены оптроны и интегральная микросхема. Фотоприемник такой микросхемы может быть изготовлен в том же кристалле кремния, что и транзисторная микросхема, как одно целое.

Оптоэлектронные устройства с управляемым световодом можно использовать в качестве логических ячеек преобразователей частоты, в устройствах переключения индикаторов, индикаторах вида жидкости, устройствах измерения малых перемещений, сенсорных устройствах очувствления роботов и т.д. Эти устройства обладают высоким быстродействием, помехозащищенностью, возможностью применения в агрессивных и взрывоопасных средах.

В последнее время при изготовлении оптоэлектронных устройств источник и приемник излучения оказывается возможным удалять из зоны измерения (от объекта контроля) на десятки метров с помощью элементов волоконной оптики — волоконных световодов (жгутов из нитей стекловолокна).

Оптоэлектронные устройства широко применяют в вычислительной технике, автоматике, контрольно-измерительных устройствах. В дальнейшем применение этих устройств будет расширяться по мере улучшения их характеристик: надежности, долговечности и температурной стабильности.


Поделиться:

Дата добавления: 2015-04-16; просмотров: 104; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты