КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Примеры решения задач. Заданы горизонтальная и фронтальная проекции прямых круговых конусов с вершинами S1 и S2Пример 1 (рис. 3.1). Заданы горизонтальная и фронтальная проекции прямых круговых конусов с вершинами S1 и S2. Требуется построить профильную проекцию заданных поверхностей, а также проекции их линии пересечения. Пересекающиеся поверхности имеют фронтальную плоскость симметрии. Отсюда следует, что искомая линия пересечения также будет симметрична относительно этой плоскости, и фронтальные проекции видимой и невидимой частей линии пересечения будут совпадать. Очерковые образующие конусов, лежащие во фронтальной плоскости симметрии, пересекаются, что позволяет найти проекции двух характерных точек: самой низкой точки 10 (проекции 1 и 1') и самой высокой точки 20 (проекции 2 и 2') линии пересечения. Для построения проекций промежуточных точек следует использовать алгоритм построения линии пересечения поверхностей, рассмотренный в теоретической части курса. Выбирая для решения данной задачи вспомогательные поверхности, пересекающие заданные, целесообразно остановиться на горизонтальных плоскостях. Введем плоскость Т1, задав ее следом T1v. Плоскость пересекает конус с вершиной S1 по окружности с радиусом r1, а конус с вершиной S2 - по окружности с радиусом R2, причем радиусы этих окружностей проецируются на фронтальную плоскость без искажения. Окружности, лежащие в плоскости Т1 пересекаются в точках, общих для заданных конических поверхностей, т.е. являются одними из точек искомой линии пересечения. Построив горизонтальные проекции окружностей с радиусами r1 и R2, можно определить проекции 3 и 31. Фронтальные проекции 3' и 31' совпадают и располагаются на следе T1h (на проекциях окружностей с радиусами r1 и R2). Для построения проекций других точек линии пересечения следует вводить новые вспомогательные горизонтальные плоскости, располагающиеся не ниже точки 10 и не выше точки 20, и повторять описанные выше построения. Так введение плоскости Т2, заданной следом T2v, позволяет построить окружности с радиусами R1 и r2. Пересечение окружностей определяет проекции точек 40 и 401. Закрытая основанием конуса с вершиной S2, линия пересечения на горизонтальной плоскости проекции не видна. Располагая горизонтальной и фронтальной проекциями пересекающихся поверхностей, а также проекциями линии пересечения, можно построить профильную проекцию конусов. При этом следует обратить внимание на проекции двух пар характерных точек: точки 50 и 501 линии пересечения принадлежат профильным образующим конуса с вершиной S1, а точки 60 и 601 - профильным образующим конуса с вершиной S2. Следовательно, в точках 5" и 51" профильная проекция линии пересечения касается проекций соответствующих образующих конуса с вершиной S1, а в точках 6" и 6"1 - образующих конуса с вершиной S2. Ось конуса с вершиной S2 находится дальше от профильной плоскости проекций (и ближе к наблюдателю), чем ось конуса с вершиной S1, поэтому видимость заданных поверхностей определяет поверхность конуса с вершиной S2. Образующие последнего существуют от основания конуса до точек 60 и 601, ограничивая видимость профильной проекции линии пересечения участком 6"1"61". Точки 50 и 501 являются границами существования профильных образующих конуса с вершиной S1. Часть этих образующих остается невидимой, поскольку закрыта другим конусом. Пример 2 (рис. 3.2). Задана горизонтальная и фронтальная проекции тора с осью О1О2 и проекции прямого кругового цилиндра с осью I1I2. Требуется построить профильную проекцию заданных поверхностей, а также проекции их линии пересечения. Оси обеих поверхностей вращения перпендикулярны к горизонтальной плоскости проекций и задают профильную плоскость симметрии, относительно которой будет симметрична и искомая линия пересечения. Следовательно, на профильной проекции видимая и невидимая части линии пересечения будут совпадать. Все образующие прямого кругового цилиндра перпендикулярны к горизонтальной плоскости проекций, поэтому все множество точек цилиндрической поверхности, включая искомую линию пересечения, на горизонтальную плоскость проекций проецируется в виде окружности. Это означает, что горизонтальной проекцией линии пересечения мы располагаем, и остается достроить фронтальную и профильную проекции. Для построения фронтальной проекции линии пересечения следует учесть, что точки этой линии принадлежат не только цилиндру, но и тору, поэтому фронтальные проекции точек можно строить как недостающие проекции точек, лежащих на торе. Например, на поверхности тора провести некоторую окружность m0 (проекции m и m') с радиусом R, отметить горизонтальные проекции 1 и 11, а затем найти фронтальные проекции 1' и 11'. Однако методически правильным является начинать построения с определения проекций характерных точек. Такими точками являются самая низкая 20 и самая высокая 30 точки линии пересечения, точки 40 и 410, лежащие на главном меридиане тора и определяющие границы существования меридиана, а также точки 50 и 510, ограничивающие существование очерковых образующих цилиндра на фронтальной проекции. Поскольку цилиндр выдвинут вперед относительно тора, то видимость на фронтальной проекции определяет поверхность цилиндра. В точках 5' и 51' проекция линии пересечения касается очерков цилиндра и теряет видимость, а в точках 4' и 41' линия касается очерков тора. Располагая горизонтальной и фронтальной проекциями любой точки заданных поверхностей, можно построить их профильную проекцию, включая проекцию линии пересечения.
|