КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Последовательное соединение потребителей переменного тока. Треугольник напряжений и сопротивлений.
В схеме, состоящей из последовательно соединенных активного сопротивления, индуктивности и емкости (рис. 2.23), заданы приложенное напряжение U, частота f и числовые значения параметров R, L и С. Требуется найти ток и напряжения на элементах
В последовательной цепи общим для всех элементов является протекающий по ним ток, поэтому именно с него начинаем построение векторной диаграммы. Проводим его изображение горизонтально (рис. 2.24).
| Рис. 2.23. Последовательная цепь переменного тока
| Вообще, направление первого вектора при построении диаграмм произвольно. Оно диктуется соображениями удобства. Дальше мы должны показать векторы напряжений на всех элементах и в соответствии со вторым законом Кирхгофа в векторной форме получить вектор входного напряжения. Сложение векторов можно выполнять по правилу параллелограмма, однако удобнее применять правило многоугольника, когда каждый последующий вектор пристраивается к концу предыдущего. Рис. 2.24. Векторная диаграмма последовательной цепи Нам известно, что напряжение на активном сопротивлении совпадает по фазе с током, поэтому вектор UR мы направляем по вектору I. К его концу пристраиваем вектор UL и направляем его вверх, так как напряжение на индуктивности опережает ток на 90° . Напряжение UС находится в противофазе с UL, т.е. отстает от тока на тот же угол 90° , поэтому вектор UС, пристроенный к концу вектора UL, направлен вниз. Векторная сумма UR, UL и UСдает вектор приложеного напряжения U. Величины напряжений на отдельных элементах цепи нам известны: , , . (2.23) Из треугольника (рис. 2.24) по теореме Пифагора находим . Вынося из под знака радикала, записываем последнее выражение в виде: , (2.24) где z – полное сопротивление цепи, равное . (2.25) В последней формуле разность индуктивного и емкостного сопротивлений мы обозначили буквой х. Это общее реактивное сопротивление цепи: х = хL – xC. Сами индуктивность и емкость называются реактивными элементами, и их сопротивления хL и xCтоже носят названия реактивных. Выражение (2.24) называется законом Ома для всей цепи. Оно может быть записано и так: , (2.26) где – полная проводимость цепи, представляющая величину, обратную полному сопротивлению: . Если необходимо определить угол сдвига фаз между напряжением и током, то это можно сделать из треугольника напряжений (рис. 2.24): . Векторная диаграмма на рис. 2.24 построена для случая, когда , что имеет место при , когда в цепи преобладает индуктивность, и цепь носит активно-индуктивный характер. Общий ток отстает по фазе от входного напряжения. Возможны также режимы, когда и . Вернемся к векторной диаграмме, представленной на рис. 2.24. Изобразим отдельно треугольник oab, являющийся ее частью (рис.. Рис. 2.28. Треугольники напряжений (а) и сопротивлений (б) Проекция вектора напряжения на вектор тока называется активной составляющей напряжения. Она обозначается Uа и равна падению напряжения на активном сопротивлении . Реактивная составляющая напряжения Uр – это проекция вектора напряжения на направление, перпендикулярное вектору тока. Она равна падению напряжения на суммарном реактивном сопротивлении цепи . Как видно из рис. 2.28, если все стороны треугольника напряжений разделить на ток, то получится подобный ему треугольник сопротивлений (рис. 2.28,б). Ему соответствуют следующие формулы: , , , .
13. Параллельное соединение потребителей переменного тока. Треугольник проводимостей.
|