Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Активная, реактивная, полная, комплексная мощности в цепи синусоидального тока. Баланс мощностей в цепи синусоидального тока.




Понятие потенциала или разности потенциалов u позволяет определить работу, совершаемую электрическим полем при перемещении элементарного электрического заряда dq, как dA = udq. В то же время, электрический ток равен i = dq/dt. Отсюда dA = ui dt, следовательно, скорость совершения работы, т.е. мощность в данный момент времени или мгновенная мощность равна

, (1)

где u и i - мгновенные значения напряжения и тока.

Величины тока и напряжения, входящие в выражение (1), являются синусоидальными функциями времени, поэтому и мгновенная мощность является переменной величиной и для ее оценки используется понятие средней мощности за период. Ее можно получить, интегрируя за период T работу, совершаемую электрическим полем, а затем соотнося ее с величиной периода, т.е.

. (2)

Пусть u=Umsin t и Imsin(ω t- ψ ), тогда средняя мощность будет равна

(3)

т.к. интеграл второго слагаемого равен нулю. Величина cos называется коэффициентом мощности.

Выражение (3) можно представить также с помощью понятий активных составляющих тока Iа и напряжения Uа в виде

P = UI cos = U(I cos ) = UIа = I(U cos ) = IUа. (4)

Учитывая, что активные составляющие тока и напряжения можно выразить через резистивную состаляющую комплексного сопротивления цепи как Iа=U/R или Uа=IR , выражение (4) можно записать также в форме

P = I2R = U2/R. (5)

Среднюю мощность P называют также активной мощностью и измеряют в ваттах [Вт].

Выделим подинтегральную функцию выражения (3)

(6)

Отсюда следует, что мгновенная мощность изменяется с двойной частотой сети относительно постоянной составляющей UIcos равной средней или активной мощности.

При cos = 1 ( = 0) , т.е. для цепи, обладающей чисто резистивным сопротивлением

(7)

 

Положительные значения мгновенной мощности соответствуют поступлению энергии от источника в электрическую цепь. Следовательно, при резистивной нагрузке вся энергия поступающая от источника преобразуется в ней в тепло.

При cos = 0 ( =   /2) , т.е. для чисто реактивной цепи

(8)
(8)

Рассмотрим энергетические процессы в последовательном соединении rLC (рис. 2). Падение напряжения на входе цепи уравновешивается суммой падений напряжения на элементах u=ur+uL+uC . Мгновенная мощность в цепи равна

ui=uri+uLi+uCi (9)

Пусть напряжение и ток на входе равны u=Umsint и Imsin(t- ). Тогда падения напряжения на элементах будут ur= rImsin(t- ), uL=  LImsin(t- + /2) = xLImsin(t- + /2), uC= Imsin(t- - /2)/( C) = xCImsin(t- - /2). Подставляя эти выражения в (9), получим

(10)
(12)

Величина S называется полной или кажущейся мощностью. Из выражения (12) следует, что полную мощность можно представить гипотенузой прямоугольного треугольника с углом  , катетами которого являются активная и реактивная мощности.

Таким образом, полная мощность это максимально возможная активная мощность, т.е. мощность, выделяющаяся в чисто резистивной нагрузке (cos = 0). Именно эта мощность указывается в паспортных данных электрических машин и аппаратов.

Реактивные составляющие токов и напряжений можно представить через активные и реактивные составляющие комплексного сопротивления, тогда для составляющих мощности

P = UIа = I2R = UаI = U2/R = U2G ; Q = UIр = I2X = UрI = U2/X = U2B ; S = UI = I2Z = U2/Z = U2Y. (13)  

Треугольник мощностей можно описать также с помощью комплексных чисел и изобразить векторами на комплексной плоскости в виде

39 Симметричная трехфазная система величин и её представление формулами, векторной диаграммой, графиком.

Трехфазные цепи являются частным случаем многофазных систем, под которыми понимают совокупность нескольких нагрузок и источников питания, имеющих одинаковую частоту и смещенных по фазе на некоторый угол друг относительно друга. Каждая пара источник-нагрузка может рассматриваться как отдельная цепь и называется фазойсистемы.

Если отдельные фазы системы не соединены между собой электрически , то такую систему называют несвязанной. Несвязанная система не обладает никакими особыми свойствами, и если между фазами отсутствует и магнитная связь, то такая совокупность цепей вообще не может рассматриваться как многофазная.

Соединение фаз системы между собой придает ей особые качества, благодаря которым многофазные системы ( в особенности трехфазные) получили исключительное распространение в области передачи и преобразования электрической энергии.

Любая многофазная система может быть симметричной и несимметричной. Симметрия системы определяется симметрией ЭДС, напряжений и токов. Под симметричной многофазной системой ЭДС, напряжений или токов понимают совокупность соответствующих величин, имеющих одинаковые амплитуды и смещенных по фазе на угол 2 /m по отношению друг к другу, где m - число фаз системы. Если для обозначения фаз трехфазной системы использовать первые буквы латинского алфавита, то симметричную систему ЭДС можно записать в виде

  (1)

Аналогичные выражения можно написать и для токов и падений напряжения в симметричной трехфазной системе.

Основное свойствосимметричных многофазных систем заключается в том, что сумма мгновенных значений величин образующих систему в каждый момент времени равна нулю. Для изображений величин образующих систему это свойство означает равенство нулю суммы фазных векторов. В справедливости этого утверждения легко убедиться на примере трехфазной системы, если в области изображений сложить числа в скобках в правой части выражений (1).

Многофазная система симметрична только тогда, когда в ней симметричны ЭДС, токи и напряжения. Если принять равными нулю внутренние сопротивления источников питания или включить их значения в сопротивления нагрузки, то условие симметрии системы сводится к симметрии ЭДС и равенству комплексных сопротивлений нагрузки. Это условие для трехфазной системы записывается в виде

Za = Zb = Zc . (2)

В дальнейшем мы будем считать, что источники питания являются источниками ЭДС и использовать условия симметрии системы в виде выражений (1) и (2).

В многофазные системы объединяют источники ЭДС и нагрузки. Для обеспечения правильного соотношения сдвига фаз при соединения или связывании системы в общем случае необходимо определить выводы элементов, по отношению к которым выполняются условия (1). Они называются начало и конец фазы источника или нагрузки. Для источников многофазной системы принято за положительное направление действия ЭДС от начала к концу.

Существуют два способа связывания элементов в многофазную систему - соединение звездой и соединение многоугольником. Звезда это такое соединение, в котором начала всех элементов объединены в один узел, называемый нейтральной точкой. многоугольник это соединение, в котором все элементы объединены в замкнутый контур так, что у соседних элементов соединены между собой начало и конец. С системой многоугольник соединяется в точках соединения элементов. Частным случаем многоугольника является треугольник рис.

Источники питания и нагрузки в многофазных системах в общем случае могут быть связаны разными способами.

При анализе многофазных систем вводится ряд понятий, необходимых для описания процессов. Проводники, соединяющие между собой источники и нагрузку, называются линейными проводами, а проводник соединяющий нейтральные точки источников и нагрузки - нейтральным проводом.

Электродвижущие силы источников многофазной системы (eA, EA, EA, eB, EB, EB, eC, EC, EC), напряжения на их выводах (uA, UA, UA, uB, UB, UB, uC, UC, UC) и протекающие по ним токи (iA, IA, IA, iB, IB, IB, iC, IC, IC) называются фазными. Напряжения между линейными проводами (UAB, UAB, UBC, UAC, UCA, UCA) называются линейными.

Связь линейных напряжений с фазными можно установить через разность потенциалов линейных проводов рис. 1 б) как uAB = uAN + uNB = uANuBN = uAuB или в символической форме

UAB = UAUB ; UBC = UBUC ; UCA = UCUA . (3)

Построим векторную диаграмму для симметричной трехфазной системы фазных и линейных напряжений (рис. 3). В теории трехфазных цепей принято направлять вещественную ось координатной системы вертикально вверх.

Каждый из векторов линейных напряжений представляет собой сумму одинаковых по модулю векторов фазных напряжений (Uф = UA = UB =UC), смещенных на угол 60 . Поэтому линейные напряжения также образуют симметричную систему и модули их векторов (Uл = UAB = UBC =UCA) можно определить как .

Выражения (3) справедливы как для симметричной системы, так и для несимметричной. Из них следует, что векторы линейных напряжений соединяют между собой концы фазных (вектор UCA рис. 3). Следовательно, при любых фазных напряжениях они образуют замкнутый треугольник и их сумма всегда равна нулю. Это легко подтвердить аналитически сложением выражений (3) - UAB + UBC + UCA = UAUB + UBUC + UCUA = 0.

Тот факт, что геометрически векторы линейных напряжений соединяют концы векторов фазных, позволяет сделать заключение о том, что любой произвольной системе линейных напряжений соответствует бесчисленное множество фазных. Это подтверждается тем, что для создания фазной системы векторов при заданной линейной, достаточно произвольно указать на комплексной плоскости нейтральную точку и из нее провести фазные векторы в точки соединения многоугольника линейных векторов.

Из уравнений Кирхгофа для узлов a, b и c нагрузки соединенной треугольником (рис. 2 б)) можно представить комплексные линейные токи через фазные в виде

IA = IabIca ; IB = IbcIab ; IC = IcaIbc . (4)

В случае симметрии токов IA = IB = IC = Iл и Iab = Ibc = Ica = Iф, поэтому для них будет справедливо такое же соотношение, как для линейных и фазных напряжений в симметричной системе при соединении звездой, т.е . Кроме того, их сумма в каждый момент времени будет равна нулю, что непосредственно следует из суммирования выражений (4).

полная мощность трехфазной сети и ее составляющие при симметричной нагрузке могут быть определены по линейным токам и напряжениям независимо от схемы соединения.

 


Поделиться:

Дата добавления: 2015-04-16; просмотров: 248; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты