![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Цепи несинусоидального тока. Разложение несинусоидальных функций в ряд Фурье. Коэффициенты, характеризующие несинусоидальную функцию.На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников. На практике к несинусоидальности напряжений и токов следует подходить двояко: Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.
Характеристики несинусоидальных величин Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока): Максимальное значение - Действующее значение - Среднее по модулю значение - Среднее за период значение (постоянная составляющая) - Коэффициент амплитуды (отношение максимального значения к действующему) - Коэффициент формы (отношение действующего значения к среднему по модулю) - Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) - Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) - Разложение периодических несинусоидальных кривых в ряд Фурье Из математики известно, что всякая периодическая функция При разложении в ряд Фурье функция представляется следующим образом:
Здесь В выражении (1)
|