Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ПРЕДЕЛЬНОЕ НАПРЯЖЕНИЕ СДВИГА




Реограммы пластично-вязких твердообразных материалов имеют сложный характер с несколькими характерными участка­ми (рис. 13.5).

С увеличением напряжения сдвига до точки 1 происходит только упругая деформация, слои друг относительно друга не пе­ремещаются, материал ведет себя как твердое тело, вязкость сис­темы бесконечно велика.

Величина θст (статическое предельное напряжение сдвига) ха­рактеризует переход системы из состояния покоя в состояние медленного перемещения одного слоя относительно другого (ползучесть) без заметного разрушения структуры. Деформация становится высокоэластичной, вязкость принимает максималь­ное значение (ηmax) и называется пластической или шведовской.

Величина θст, или более распространенное на практике обоз­начение θ0 — предельное напряжение сдвига неразрушенной структуры, является одной из основных реологических характе­ристик пластично-вязких материалов. Под предельным на­пряжением сдвига понимают напряжение, по достижении которого материал начинает необратимо деформироваться (течь).

Рис. 13.5. Реологические кривые для твердообразных систем:

а — зависимость градиента скорости

от напряжения сдвига;

б — зависимость

логарифма эффективной вязкости

от напряжения сдвига;

0—1 — зона упругих деформаций;

1—2 — зона начала течения

с наибольшей эффективной

и пластической вязкостью;

2—3 — начало зоны лавинного

разрушения структуры;

3—4— зона лавинного разрушения структуры (течение с наименьшей

пластической вязкостью);

5 и выше — зона ньютоновского течения с постоянной вязкостью

предельно разрушенной структуры

 

Для большей наглядности представим себе кубик (рис. 13.6), который нижним основанием приклеен к неподвижной плоско­сти, а к верхнему основанию приложено напряжение θ. В резуль­тате кубик превратится в ромбоэдр, так как его боковые стороны сдвинутся на угол ε. Этот угол называется углом сдвига. Он зави­сит от приложенного напряжения и свойств материала.

 

 

Рис. 13.6. Деформация сдвига

 

 

Если напряжения сдвига малы, то и углы невелики и исчеза­ют после того, как будут сняты напряжения, в этом случае тело проявляет упругие свойства. Если приложены большие напряже­ния, получаются большие углы ε, после снятия напряжений углы сдвига могут частично уменьшаться, но не до нуля, т. е. появятся остающиеся углы сдвига ε'. Напряжения, при которых они появ­ляются, называются пределом упругости и характеризуют пре­дельное напряжение сдвига.

Участок 2—3 (см. рис. 13.5) соответствует интенсивному (ла­винному) разрушению структуры в системе. Начало разрушения θт означает переход ползучести в течение с постоянно изменяю­щейся вязкостью, называемой эффективной вязкостью ηЭф.

Эффективная вязкость — это итоговая характеристика для данного напряжения сдвига, характеризующая равновесное со­стояние между процессами восстановления и разрушения струк­туры, а также ориентации частиц в направлении установившего­ся ламинарного потока жидкости.

Участок 3— 4 (прямая линия) отвечает течению системы с раз­рушенной структурой. Величина θ0, отсекаемая на оси абсцисс продолжением прямолинейного участка, называется динамиче­ским или бингамовским предельным напряжением сдвига.

Величина θmax соответствует практически полному разруше­нию структурных элементов. Вязкость системы принимает ми­нимально возможное значение.

 


Поделиться:

Дата добавления: 2014-10-31; просмотров: 429; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты