Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Построение коммутируемого маршрута




Рассмотрим, как система MPLS автоматически создает путь LSP в простейшем случае – с помощью протокола LDP. Архитектура MPLS не требует обязательного применения LDP, однако, в отличие от других возможных вариантов, он наиболее близок к окончательной стандартизации.

Сначала посредством многоадресной рассылки сообщений UDP коммутирующие маршрутизаторы определяют свое «соседство» (adjacency) в рамках протокола LDP. Кроме близости на канальном уровне, LDP может устанавливать связь между «логически соседними» LSR, не принадлежащими к одному каналу. Это необходимо для реализации туннельной передачи. После того как соседство установлено, LDP открывает транспортное соединение между участниками сеанса поверх ТСР. По этому соединению передаются запросы на установку привязки и сама информация о привязке. Кроме того, участники сеанса периодически проверяют работоспособность друг друга, отправляя тестовые сообщения (keepalive message).

Рис. 7.3. Построение коммутируемого пути по протоколу LDP

 

Рассмотрим на примере, как происходит заполнение таблиц меток по протоколу LDP (рис.7.3). Предположим, что выбран упорядоченный режим распределения меток LSP со спонтанным распространением сведений о привязке.

На стадии A каждое из устройств сети MPLS строит базу топологической информации, задействуя любой из современных протоколов маршрутизации (на схеме – OSPF). На стадии B маршрутизаторы LSR применяют процедуру нахождения соседних устройств и устанавливают с ними сеансы LDP.

Далее (стадия С) LSR 2 на основе анализа собственных таблиц маршрутизации обнаруживает, что он является выходным LSR для пути, ведущего к IP-сети 193.233.48.0. Тогда LSR 2 ассоциирует класс FEC с пакетами, адрес получателя которых соответствует префиксу данной сети, и присваивает этому классу случайное значение метки – в нашем случае 18. Получив привязку, протокол LDP уведомляет верхний маршрутизатор LSR (LSR 1) о том, что потоку, адресованному сети с префиксом 193.233.48, присвоена метка 18. LSR 1 помещает это значение в поле выходной метки своей таблицы.

На стадии D устройство LSR 1, которому известно значение метки для потока, адресованного на префикс 193.233.48, присваивает собственное значение метки данному FEC и уведомляет верхнего соседа (LSR 0) об этой привязке. Теперь LSR 0 записывает полученную информацию в свою таблицу. После завершения данного процесса все готово для передачи пакетов из сети «клиента» в сеть с адресом 193.233.48.0, т.е. по выбранному пути LSP.

Спецификация класса FEC может содержать несколько компонентов, каждый из которых определяет набор пакетов, соответствующих данному классу. На сегодняшний день определены два компонента FEC: адрес узла (host address) и адресный префикс (address prefix). Пакет классифицируется как принадлежащий к данному классу FEC, если адрес получателя точно совпадает с компонентом адреса узла либо имеет максимальное совпадение с адресным префиксом. В нашем примере узел LSR 0 выполняет в процессе передачи классификацию пакетов, поступающих к нему из сети клиента, и (если адрес получателя в них совпадает с префиксом 193.233.48), присвоив пакету метку 33, отправляет его через интерфейс 2.


Поделиться:

Дата добавления: 2014-11-13; просмотров: 125; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты