Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Приймачі випромінювання




Астрономічні обсерваторії. Упродовж тривалого часу заняття астрономією було ледь не приватною справою окремих ентузіастів. Але в XVII ст. було усвідомлено її значення для потреб географії та мореплавання. Розпочалось будівництво перших державних астрономічних обсерваторій (АО): Паризької (1671 р.), Гринвіцької (1675 р.) тощо.

В наш час у світі налічують близько 400 АО. В Україні провідними є Головна астрономічна обсерваторія НАН України (1944 р.), Інститут радіоастрономії з його унікальним декаметровим телескопом УТР-2 під Харковом, Кримська астрофізична обсерваторія (1950 р.). Певні традиції досліджень і спостережень зберігають АО університетів -Львівського (1769 р.), Харківського (1898 р.), Київського (1845 р.), Одеського (1871 р.).

Довгий час АО будувались поблизу чи навіть у населених пунктах, з XIX ст. їх почали розташовувати на гірських вершинах. Серед найбільших АО світу найвідомішими сьогодні є: введена в дію 1990 р. АО на вершині древньої вулканічної гори Мауна-Кеа (4215 м, о. Гавані), оголошеної науковим заповідником за свій унікальний аст-роклімат; тут встановлено кілька 4-метрових телескопів, а також телескопи «Кек», «Джеміні», «Субару»; англійська АО на о. Ла-Пальма (2327 м, 1986 р.), американська АО Лас-Кампанас (2280 м, 1976 р.) у Чилі і там же європейська АО Ла-Сілла (2347 м, 1976 р.), де встановлено «Дуже великий телескоп».

В останні роки не менше половини наукових публікацій з астрономії ґрунтуються на спостереженнях небесних об'єктів із стратостатів, штучних супутників Землі, орбітальних космічних станцій та автоматичних міжпланетних станцій (АМС). В космосі працює ціла низка інфрачервоних, ультрафіолетових, рентгенівських, гамма-обсерваторій, які досліджують небо у всіх діапазонах електромагнітних хвиль, наприклад рентгенівська обсерваторія «Чандра». Важливою для астрономів подією був запуск 25 квітня 1990 р. на орбіту висотою 612 км «Космічного телескопа ім. Габбла» з діаметром дзеркала 2,4 м, який вирішує велику кількість астрофізичних задач. Загалом з 1962 р. для астрономічних досліджень запущено близько 50 ШСЗ та АМС.

Рисунок – Стратостат Рисунок – АМС Рисунок –

обсерваторія «Чандра»

Радіотелескопи і радіоінтерферометри. Радіовипромінювання від космічних об'єктів приймається спеціальними установками, які називаються радіотелескопами (РТ). Сучасні радіотелескопи досліджують космічні радіохвилі в довжинах від одного міліметра до декількох десятків метрів.

Основними складовими частинами типового радіотелескопа є антена і дуже чутливий приймач. Антени РТ, які приймають міліметрові, сантиметрові, декаметрові та метрові хвилі — це найчастіше параболічні відбивачі, подібні до дзеркал звичайних оптичних рефлекторів. У фокусі параболоїда встановлюється опромінювач — пристрій, який збирає радіовипромінювання, направлене на нього дзеркалом. Опромінювач передає прийняту енергію на вхід приймача, і після підсилення та виділення заданої частоти сигнал реєструється на стрічці самописного електричного приладу. Сучасні підсилювачі дають змогу виявляти (розрізняти) радіосигнали, що виникають при змінах температури всього на 0,001 К.

Радіоастрономічні дзеркала не вимагають такої точності виготовлення, як оптичні. Щоб дзеркало не спотворювало зображень, його відхилення від заданої параболічної форми не повинно перевищувати 1/8 довжини хвилі, яку він приймає. Наприклад, для довжини хвилі 10 см досить мати точність дзеркала близько 1 см. Більше того, дзеркало РТ можна робити не суцільним: досить натягнути металеву сітку на каркас, який надає йому параболічної форми. Нарешті, РТ можна зробити нерухомим, якщо замінити поворот дзеркала зміщенням опромінювача. Завдяки таким особливостям РТ можуть набагато перевищувати оптичні телескопи у розмірах.

Найбільша у світі радіоастрономічна антена, встановлена у кратері згаслого вулкана Аресібо на острові Пуерто-Ріко, має діаметр 305 м. Нерухома антена, спрямована в зеніт, не дозволяє приймати радіохвилі з будь-якої точки неба, але завдяки добовому обертанню Землі і можливості зміщувати опромінювач більша частина небесної сфери доступна для спостережень.

Рисунок - Найбільша у світі радіоастрономічна антена

Інші найбільші радіотелескопи з параболічною антеною встановлено: в Радіоастрономічному інституті ім. М. Планка (Еффельсберг, ФРН) — діаметр антени 100 м, в обсерваторії Грін Бенк у штаті Вірджинія (США) — антена 110x100 м, а також 76-метровий РТ в обсерваторії Джодрел Бенк (Англія), 64-метровий РТ в обсерваторії Парке (Австралія), 22-метровий РТ недалеко від Євпаторії в Криму. Усі вони легко спрямовуються в задану точку неба поворотом навколо двох осей — вертикальної (встановлюється азимут об'єкта) і горизонтальної (установка висоти об'єкта). В подальшому ЕОМ безперервно подає сигнали керуючим пристроям, які ведуть РТ услід за об'єктом при його зміщенні, зумовленому добовим обертанням небесної сфери.

Радіотелескопи дуже великих розмірів можуть бути побудовані з великої кількості окремих дзеркал, що фокусують випромінювання на один опромінювач. Прикладом є РАТАН-600 («радіотелескоп Академії наук, діаметр 600 м»), встановлений поблизу станиці Зеленчук на Північному Кавказі неподалік від 6-метрового оптичного телескопа. Він являє собою замкнене кільце діаметром 600 м і складається з 900 плоских дзеркал розмірами 2x7,4 м, що утворюють сегмент параболоїда. В такому РТ може працювати як усе кільце, так і його частина.

Рисунок - РАТАН-600

На довжинах хвиль від кількох метрів і більше параболічна антена не застосовується, замість неї використовують системи з великої кількості плоских дипольних антен, електричний зв'язок між якими забезпечує необхідну для РТ спрямованість прийому. Саме за таким принципом побудовано найбільший у світі радіотелескоп декаметрового діапазону УТР-2, розташований під Харковом.

Використовуючи відоме у фізиці явище інтерференції, дослідники розробили методи радіоінтерферометричних спостережень з використанням двох різних приймачів. Об'єднуючи декілька РТ, будують так звані радіоінтерферометри (РІ).

Рисунок - Радіоінтерферометри

На сьогодні найвідомішим РІ є введений у дію 1980 р. РТ УВА («Дуже велика гратка»), який встановлено в пустельній місцевості штату Нью-Мексико, СІЛА. Цей РТ складається з 27 повноповоротних 25-метрових параболічних антен, розміщених у формі літери У з довжиною двох плечей по 21 км, а третього — 19 км. У цьому і аналогічних випадках антени пов'язані між собою електричними лініями.

Розроблено також методи наддалекої радіоінтерферометрії, коли використовують попарно великі антени, розташовані на відстанях до 12 000 км. З допомогою таких систем в радіоастрономії вдалось отримати кутове розділення дуже тісних об'єктів порядку 0,0001", що набагато краще, ніж дають оптичні телескопи (для порівняння: кутова роздільна здатність людського ока - 2'). З 1979 р. однією з антен інтерферометра є РТ, виведений супутником на орбіту Землі. Завдяки радіоінтерферометрам вдається вивчати структуру далеких радіоджерел.

Телескопи для спостережень у високоенергетичних діапазонах електромагнітних хвиль. Оскільки земна атмосфера затримує електромагнітні хвилі, коротші за 300 нм, всі приймачі ультрафіолетових, рентгенівських та гамма-променів доводиться виносити за її межі. Значну частину досліджень в ультрафіолеті від 300 нм до 120 нм здійснено за допомогою звичайних телескопів з дзеркалами, покритими алюмінієм, для ще коротших хвиль використовують дзеркала, покриті тонким шаром фтористого магнію, та добре відомі лічильники Гейгера-Мюллера. Особливі труднощі виникають при спостереженнях рентгенівського випромінювання з довжиною хвиль від 0,01 нм до 1 нм.

Сучасні методи полірування та шліфування матеріалів не дозволяють виготовити дзеркало з такою високою точністю. Однак виявляється, що при падінні і відбиванні променя під дуже малим кутом до дзеркала вимоги до точності його виготовлення значно послаблюються. Такий телескоп є поєднанням двох дзеркал - параболоїда обертання і гіперболоїда обертання, відбивні поверхні яких покриті шаром хрому і нікелю. Промінь відбивається від першого дзеркала під кутом лише Г до відбивної поверхні, потрапляє на друге дзеркало, а після цього - у фокальну площину, де й будується зображення, скажімо, Сонця. Усі ж інші промені, що йдуть ближче до головної осі дзеркала, затримуються діафрагмою (непрозорим екраном).

В гамма-діапазоні пристроєм для реєстрації квантів слугують детектори (з лат. — «той, що виявляє»). Їх встановлюють у глибоких (до 1 500 м) шахтах, у тунелях, прокладених у надрах гір (як-от Ельбрус, Монблан), на дні великих озер, щоб істотно зменшити побічні ефекти.

Рисунок - Детектори


Поделиться:

Дата добавления: 2014-12-03; просмотров: 254; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты