КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Следствия из преобразований Лоренца.Самым неожиданным следствием теории относительности является зависимость времени от системы отсчета. Длительность событий в разных системах отсчета. Пусть в некоторой точке , покоящейся относительно подвижной системы , происходит событие, длительность которого = - , где и - начальный и конечный промежутки времени. C помощью формул (7.4) получим, что длительность этого же события в неподвижной системе отсчета K равна или (7.5) Из последнего равенства следует, что , т.е. для подвижной системы отсчета событие будет происходить за меньший промежуток времени. Следовательно, для подвижной системы отсчета время идет медленнее. Этот удивительный результат можно понять, если придумать специальные часы, в которых роль маятника играет световой сигнал, бегающий между двумя параллельными зеркалами, находящимися на расстоянии L. Период таких часов для системы отсчета, в которой они покоятся = 2L /с. Если эти часы движутся со скоростью vo вдоль оси x (рис. 7.2), то для неподвижного наблюдателя траектория движения луча выглядит в виде зигзага и расстояние, пройденное светом за период часов t , будет более длинным, его квадрат равен 4L2 + t2 = с2t2 . Исключая L из двух последних равенств, легко получить выражение (7.5) t = /(1-- b 2)0,5. Если космонавт улетит от Земли со скоростью, близкой к скорости света (например, b 2 = 1 - 10-4 ), и вернется обратно через год, то по земным часам полет продлится 100 лет. Космонавт возвратится на Землю в сто раз более молодым, чем его брат-близнец. Данный результат мысленного эксперимента кажется неправильной интерпретацией преобразований Лоренца, так как, если за неподвижную систему отсчета считать движущийся корабль, то его близнец на Земле удаляется с такой же скоростью, и его время как бы замедлится по сравнению с часами на корабле. Однако эти две системы – не равнозначны, космонавт на корабле должен ускоряться и замедляться, чтобы вернуться на Землю. Поэтому система отсчета, связанная с кораблем ‑ неинерциальна. Получается, что причина замедления физических процессов связана с тем, что космонавт при путешествии подвергался дополнительным механическим перегрузкам. Детальный расчет, выходящий за рамки специальной теории относительности, показывает, что часы, движущиеся с ускорением, идут медленнее, поэтому при возвращении отстанут именно они. Эффект замедления хода часов получил экспериментальное подтверждение при исследовании частиц m-мезонов, образующихся в космических лучах. Среднее время жизни неподвижных m-мезонов составляет 2 10-6с. Казалось бы, что двигаясь со скоростью света m-мезоны могут пройти расстояние 600м. Однако m-мезоны проходят расстояние 20-30 км и достигают земной поверхности, т.е. для земного наблюдателя время жизни m-мезонов оказывается гораздо большим. Одновременность событий в разных системах отсчета. Пусть в подвижной системе в точках с координатами и происходят одновременно два события в момент времени = = b . Согласно формулам (7.4) в системе K этим событиям будут соответствовать координаты t1 = (b + vo /c2)/(1- - b 2)0,5 и t2 = (b + vo /c2)/(1-b 2)0,5 . Из написанных формул видно, что если события в системе K пространственно разобщены ( ¹ ), они не будут происходить одновременно. Например, при > получим t1 > t2 , т.е. событие в точке 1 для неподвижной системы отсчета произойдет раньше, хотя для подвижной системы эти события одновременны. Длина тел в разных системах отсчета. Из преобразований (7.4) следует, что при движении тел их размеры по осям x и y не изменяются. Пусть в системе K покоится стержень, параллельный оси x . Длина его, измеренная в этой системе, равна l = x2 - x1 , где x1 и x2 - координаты обоих концов стержня в системе K . Используя преобразования Лоренца (7.4), выразим длину стержня в следующем виде l = ( + vo )/(1- b 2)0,5 - ( + + vo )/(1- b 2)0,5 = ( - )/(1-b 2)0,5 , где и - координаты концов стержня, измеренные в подвижной системе в один и тот же момент времени . Длина стержня в системе равна = - . Окончательно получим l = /(1- b 2)0,5 или = l(1- b 2)0,5 . Отсюда следует l > . Длину l называют собственной длиной стержня в той системе отсчета, в которой он покоится. Это наибольшая длина стержня. Если предмет начинает двигаться, его размеры в направлении оси x сокращаются пропорционально (1- b 2)0,5 . Например, если неподвижное тело является шаром, то при движении шар сжимается вдоль оси x , приобретая форму эллипсоида вращения. Релятивистский закон сложения скоростей.Пусть опять система движется относительно системы K со скоростью vo вдоль оси x . Пусть vx = dx/dt есть компонента скорости некоторой частицы в системе K , а = - компонента скорости ее в системе . Дифференцируя формулы (7.4), получим ; dy = d ; dz = dz’; . Разделив первые три равенства на четвертое и учитывая, что b = vo/c, находим (7.6) где vx , vy , vz - составляющие скорости частицы в системе K , , , - составляющие скорости частицы в системе . Полученные формулы и определяют преобразование скоростей. При с ® релятивистские формулы переходят в формулы классической механики. Пусть корабль движется вдоль оси x со скоростью = c / 2 и некоторая частица движется в этом же направлении относительно корабля со скоростью = c / 2 . По формулам (7.6) получим vx = 4c/5 , т.е. по теории относительности 1/2 и 1/2 дают не 1, а 4/5. Возьмем предельный случай. Положим, что человек на борту корабля наблюдает, распространение света вдоль оси x , т.е. = с. Тогда по формулам (8.6) получим vx = (с + )/(1 + c/c2) = c . Итак, скорость света для неподвижного наблюдателя опять равна скорости света.
|