КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Момент силы. Основное уравнение динамики вращательного движения.Одна и та же сила может сообщать вращающемуся телу разные угловые ускорения в зависимости от её направления и точки приложения. Для характеристики вращающего действия силы вводят понятие момента силы. Различают момент силы относительно неподвижной точки и относительно неподвижной оси. Моментом силы относительно точки О (полюса) называется векторная величина, равная векторному произведению радиус-вектора проведенного из точки О в точку приложения силы, на вектор силы: . Поясняющий это определение рис. 3 выполнен в предположении, что точка О и вектор лежат в плоскости чертежа, тогда вектор также располагается в этой плоскости, а вектор перпендикулярен к ней и направлен от нас (как векторное произведение 2-х векторов; по правилу правого буравчика). Модуль момента силы численно равен произведению силы на плечо: , где - плечо силы относительно точки О, a - угол между направлениями и , . Плечо - кратчайшее расстояние от центра вращения до линии действия силы. Вектор момента силы сонаправлен с поступательным движением правого буравчика, если его рукоятку вращать по направлению вращающего действия силы. Момент силы - аксиальный (свободный) вектор, он направлен вдоль оси вращения, не связан с определенной линией действия, его можно переносить в пространстве параллельно самому себе. Моментом силы относительно неподвижной оси Z называется проекция вектора на эту ось (проходящую через точку О): . Если на тело действуют несколько сил, то результирующий момент сил относительно неподвижной оси Z равен алгебраической сумме моментов всех сил относительно этой оси. Вращающееся тело можно представить как совокупность материальных точек. Выберем произвольно некоторую точку с массой mi , на которую действует сила , сообщая точке ускорение (рис. 4). Поскольку вращение создает только тангенциальная составляющая, для упрощения вывода направлена перпендикулярно оси вращения. В этом случае . Согласно второму закону Ньютона . Умножим обе части равенства на ri: , , где - момент силы, действующей на материальную точку, - момент инерции материальной точки. Следовательно, . Для всего тела: , , , (1) т.е. угловое ускорение тела прямо пропорционально моменту действующих на него внешних сил и обратно пропорционально его моменту инерции. Уравнение (1) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси, или второй закон Ньютона для вращательного движения.
|