КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Закон Био-Савара-Лапласа и его применение для расчета магнитных полей.Магнитное поле постоянных токов различной формы было подробно исследовано фр. учеными Био и Саваром. Ими было установлено, что во всех случаях магнитная индукция в произвольной точке пропорциональна силе тока, зависит от формы, размеров проводника, расположения этой точки по отношению к проводнику и от среды. Результаты этих опытов были обобщены фр. математиком Лапласом, который учел векторный характер магнитной индукции и высказал гипотезу о том, что индукция в каждой точке представляет собой, согласно принципу суперпозиции, векторную сумму индукций элементарных магнитных полей, создаваемых каждым участком этого проводника. или . Лапласом в 1820 г. был сформулирован закон, который получил название закона Био-Савара-Лапласа: каждый элемент проводника с током (рис. 9) создает магнитное поле, вектор индукции которого в некоторой произвольной точке К определяется по формуле: - закон Био-Савара-Лапласа. Из закона Био-Совара-Лапласа следует, что направление вектора совпадает с направлением векторного произведения . Такое же направление дает и правило правого винта (буравчика).
, - элемент проводника, сонаправленный с током; - радиус-вектор, соединяющий c точкой K; a - угол между и . Закон Био-Савара-Лапласа имеет практическое значение, т.к. позволяет найти в заданной точке пространства индукцию магнитного поля тока, текущего по проводнику конечных размеров и произвольной формы. Для тока произвольной формы подобный расчет представляет собой сложную математическую задачу. Однако, если распределение тока имеет определенную симметрию, то применение принципа суперпозиции совместно с законом Био-Савара-Лапласа дает возможность относительно просто рассчитать конкретные магнитные поля. Рассмотрим некоторые примеры. Магнитное поле в центре кругового тока (рис. 10):
. a=900, sina=1, .
Магнитное поле прямолинейного проводника с током (рис. 11).
1) для проводника конечной длины (рис. 12):
;
2) для проводника бесконечной длины: a1 = 0, a2 = p, .
|