Круглий хвилевод
Очевидно, будемо користуватися циліндричною СК :
Шукатимемо хвилю . Можна розв’язати , однак ми розв’яжемо рівняння для скалярних потенціалів: . З урахуванням вигляду оператора Лапласа у циліндричній системі координат одержимо: .
Використаємо метод відокремлення змінних:
;

. Звідки очевидно, що:
а) , тут - будь-який кут повороту, залежить лише від вибору координат (з’явився через симетрію задачі). Оберемо .
б) - ЛДР зі змінними коефіцієнтами, тому звичайним шляхом його розв’язувати неможливо; потрібно застосувати спеціальні функції. Приведемо рівняння до стандартного вигляду: заміною воно зводиться до рівняння Бесселя:
.
Його розв’язками є циліндричні функції (функції Бесселя):
(*)
Функції Неймана , а тому очевидно, що , тому що поле при повинно бути скінченим. Таким чином, якщо в задачі існує точка , то розв’язок завжди береться у вигляді (*), де , тобто у вигляді функції Бесселя: .
Таким чином, , .
Скористаємося граничними умовами. Оскільки ; а ; то можна записати: . Отже, - це є умова для визначення . Корені цього рівняння аналітично не отримуються, але їх можна знайти чисельно:

, де - номер хвилі, - номер рядку.
|
|
|
| 3.83
| -
|
| 1.84
| -
| Отже, . Таким чином, для хвилі . Критична довжина хвилі у хвилеводі визначається з умови . Аналогічно .
Тепер знайдемо картину хвиль. Для цього скористаємося топологічними перетвореннями:

Перетворюючи в декартову СК, одержали в циліндричній СК.
Перший індекс – змінна по , другий – змінна по . Таким чином у круглому хвильоводі “головною”, “найкращою” є хвиля (в той час як у квадратному - .
|