КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Поля в несиметрично – смушковій лінії.Складність розв’язання цієї задачі полягає в тому, що граничні умови тут – нерегулярні; не можна покласти, що на поверхні . Використовують наближені методи; зокрема конформних відображень.
Наближення: Існує Т – хвиля (нехтуємо випромінюванням). Використаємо симетрію задачі. Цікавимося випромінюванням на краю.
Треба розв’язати задачу: знайти розв’язок рівняння Лапласа у верхній площині з напівнескінченним розрізом. Використаємо метод конформних відображень: тут застосовується інтегральне конформне перетворення Кристофеля – Шварца.
Розглянемо ламану лінію, що в точці а змінює напрямок на кут :
. Якщо є два зломи, то , де , , . В нашій конкретній задачі ламану можна подати у вигляді:
Кут відраховується проти годинникової стрілки від наступного напрямку до попереднього. , , перенесемо точки: .
Проінтегрувавши отримаємо шукане перетворення: . Константи та визначаються з умов: , отже . Умовою ми не можемо скористатися, бо одержимо . Використаємо фізичні міркування:
Загальний вид відображення ; бо область інваріанта відносно зсуву вздовж ОХ (трансляційна симетрія). Зрозуміло, у нашій задачі область при . При перетворення набуває вигляду: . Порівнюючи з , . Отже шукане перетворення: . Для того, щоб знайти розв’язок у верхній півплощині, необхідно перетворити її в конденсатор, використовуючи перетворення зворотне до : . Тоді відображення, що перетворить вихідну область ( ) (край конденсатора) у конденсатор ( ), має вигляд: . Тепер необхідно розв’язати рівняння у плоскому конденсаторі та скористатись зворотнім перетворенням: , . .
Таким чином: . Запишемо рівняння еквіпотенційних поверхонь: . ЕПП переходить в . ЕПП переходить в . Таким чином, отримаємо таку картину еквіпотенціальних поверхонь:
Тепер знайдемо електричні силові лінії. Ці лінії перпендикулярні ЕПП, однак ми знайдемо їх в аналітичний спосіб. Очевидно, в ( ) такі силові лінії, як на малюнку. Знайдемо образ цих ліній у просторі ( ). Наприклад, , . Отримаємо картину ЕП в ( ):
Часто важливо знайти напруженість поля в певній точці: .
|