Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Закон возрастания энтропии.




Читайте также:
  1. Ex lege XII tabularum aes alienum hereditarium... pro portionibus... ipso iure divisum (C. 2. 3.26). - По законам XII таблиц наследственные долги делятся автоматически на доли.
  2. I закон термодинамики
  3. I.4.2) Законы.
  4. II закон Ньютона.
  5. II закон термодинамики. Теорема Карно-Клаузиуса
  6. II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  7. II.3. Закон как категория публичного права
  8. II.3.2) Классификация законов.
  9. II.3.3) Сила и пространство действия законов.
  10. III закон Ньютона.

1) Энтропия и ее термодинамический смысл:

Энтропия – это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

В любом обратимом процессе изменения энтропии равно 0

(1)

В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает ΔS> 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

ΔS ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле ΔS определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

 

т.е. изменения энтропии S ΔS1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δQ= 0, то ΔS = 0 =>S = const, то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const; T1 = T2: )

При изохорном процессе (V = const; V1 =V2; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S1 + S2 + S3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостоян (w ≥ 1, а математическая вероятность ≤ 1).



За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданн состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

S=

где - постоянная Больцмана ( ). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы – число микросостояний максимально, при этом максимальна и энтропия.



Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой сис-ме ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистич толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросос, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максим.

Закон возрас энтропии и составляет основ содержа второго начала термодинамики, которое в наиболее общем виде формулируется так:

В замкнутой системе все необрат процессы протекают в направлении возраст энтропии; в частном случае, когда процессы, протекающие в замкнутой системе, обратимы, энтропия системы остается постоянной.

Более кратко второе начало термодинамики может быть сформулировано следующим образом:

В замкнутой системе энтропия никогда не убывает, она либо возрастает, либо остается неизменной, т. е. в замкнутой системе всегда

(9)

Где знак равенства относиться к обратимым процессам, а знак неравенства ― к необратимым


 

Термич и калорическое урав состояния. Связь этих уравнений.


Дата добавления: 2014-12-30; просмотров: 12; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты