![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
О характере работы и разрушения внецентренно сжатых элементов
Напряжённо-деформированное состояние внецентренно сжатых элемента зависит от его гибкости, величины эксцентриситета приложения сжимающей силы, длительности действия нагрузки, вида закрепления элемента и других факторов. В зависимости от величины эксцентриситета различают два случая внецентренного сжатия: - случай больших эксцентриситетов - случай малых эксцентриситетов В случае больших эксцентриситетов разрушение элемента происходит по растянутой зоне, характер разрушения аналогичен разрушению изгибаемых элементов. Напряжения в растянутой арматуре становятся равными пределу текучести стали ( В случае малых эксцентриситетов разрушение элемента происходит по сжатой зоне вследствие исчерпания несущей способности бетона сжатой зоны и сжатой арматуры. Напряжения в бетоне становятся равными расчётному сопротивлению бетона на осевое сжатие (призменной прочности) Рисунок 11.1 – Расчётные случаи внецентренно сжатых элементов: а – случай больших эксцентриситетов; б – случай малых эксцентриситетов.
2. Учёт влияния прогиба элемента
Рисунок 11.2 – Учёт влияния продольного изгиба элемента
Под действием продольной сжимающей силы
где
где D – жесткость железобетонного элемента в предельной стадии равная:
Если гибкость элемента
3. Расчёт сжатых элементов прямоугольного сечения в случае больших эксцентриситетов Случай больших эксцентриситетов имеет место, если Предельные усилия, воспринимаемые бетоном и арматурой:
Плечи внутренних пар сил, согласно чертежа на рис. 11.3:
Рисунок 11.3 – Схема усилий при расчёте прочности внецентренно сжатого элемента Эксцентриситеты приложения сжимающей силы относительно центров тяжестей растянутой и сжатой арматур:
Рассмотрим равновесие элемента (рис. 11.3) под действием продольной сжимающей силы 1.
Выражение Тогда условие прочности внецентренно сжатого элемента в случае больших эксцентриситетов примет вид: Приравняв внешнее и внутреннее усилия
2.
Выражение Предельный момент может достигнут за счёт увеличения либо сжимающей продольной силы если если
На практике чаще встречается случай когда Тогда моментное условие прочности внецентренно сжатого элемента в случае больших эксцентриситетов примет вид:
Выполним подстановку Обозначив
Приравняв внешний и внутренний моменты или коэффициент При симметричном армировании сечения, когда Условия применения вышеприведённых формул: 1. 2.
4. Расчёт сжатых элементов прямоугольного сечения в случае малых эксцентриситетов Случай 2 (малых эксцентриситетов), когда ξ >ξR Этот случай имеет место при загружении элемента с малым эксцентриситетом продольной силы, либо при очень сильной арматуре Аs. Сечение может быть полностью сжато или сжата его большая часть, находящаяся ближе к продольной силе, а остальная часть сечения испытывает относительно слабое растяжение. Разрушается такой элемент вследствие исчерпания прочности в бетоне и арматуре в части сечения, расположенной ближе к продольной силе при соблюдении условия ξ >ξR. При этом напряжения (сжимающие или растягивающие) в части сечения, более удаленной от сжимающей силы, остаются сравнительно низкими, и прочность материалов (в первую очередь арматуры Аs) там недоиспользуется. Рассмотрим расчёт внецентренно сжатого элемента прямоугольного сечения при бетоне класса не выше ВЗО и арматуре класса A400 и ниже, расчётная схема которого представлена на рис. 11.4. Расчёт несущей способности, как и для случая 1, производится из условия
где е = е0 + 0,5h -а. При этом высота сжатой зоны сечения определяется из совместного решения уравнения
Рисунок 11.4 – Расчетная схема внецентренно сжатого элемента прямоугольного поперечного сечения, работающего по случаю 2: 1 – геометрическая ось элемента; 2 – граница сжатой зоны; 3 – центр тяжести площади бетона сжатой зоны Расчёт несущей способности, как и для случая 1, производится из условия где е = е0 + 0,5h -а. При этом высота сжатой зоны сечения определяется из совместного решения уравнения
и линейной зависимости При любых сечениях, внешних усилиях, любом армировании и классе бетона рекомендуется пользоваться формулами общего случая расчёта [2, п. 3.28]. Из плоскости изгиба внецентренно сжатый элемент рассчитывается также как внецентренно сжатый с эксцентриситетом, равным случайному.
|