Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Основные типы и номенклатура комплексных соединений.




Читайте также:
  1. I. Основные положения
  2. II. Основные правила черной риторики
  3. II. Основные принципы и правила служебного поведения государственных гражданских служащих Федеральной налоговой службы
  4. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  5. II. Основные этапы развития физики Становление физики (до 17 в.).
  6. III.2.1) Понятие преступления, его основные характеристики.
  7. III.2.2) Основные группы и виды преступлений.
  8. IX.1.6.4. Изомеры и их номенклатура
  9. IX.3.1.3. Основные химические вещества
  10. V 1: Основные формально-логические законы

К основным типам комплексных соединений относятся следующие.

Аммиакаты — комплексы, в которых лигандами служат молекулы аммиака, например: . Известны комплексы, аналогичные аммиакатам, в которых роль лиганда выполняют молекулы аминов: (метиламин), (этиламин), (этилендиамин, условно обозначаемый ) и др. Такие комплексы называют аминатами.

Аквакомплексы — в которых лигандом выступает вода: и др. Находящиеся в водном растворе гидратированные катионы содержат в качестве центрального звена аквакомплекс. В кристаллическом состоянии некоторые из аквакомплексов удерживают и кристаллизационную воду, например: . Кристаллизационная вода не входит в состав внутренней сферы, она связана менее прочно, чем координированная, и легче отщепляется при нагревании.

Ацидокомплексы. В этих комплексах лигандами являются анионы. К ним относятся комплексы типа двойных солей, например (их можно представить как продукт сочетания двух солей — и т. п.), комплексные кислоты — , гидроксокомплексы — и др.

Между этими классами существуют переходные ряды, которые включают комплексы с различными лигандами. О таких комплексах мы уже упоминали. Приведем переходный ряд между аммиакатами и ацидокомплексами .

Циклические, или хелатные (клешневидные), комплексные соединения. Они содержат или полидентатный лиганд, который как бы захватывает центральный атом подобно клешням рака:

В этих комплексах символом М обозначен атом металла, а стрелкой — донорно-акцепторная связь. Примерами таких комплексов служат оксалатный комплекс и этилендиаминовый комплекс . К группе хелатов относятся и внутрикомплексные соединения, в которых центральный атом входит в состав цикла, образуя ковалентные связи с лигандами разными способами: донорно-акцепторным и за счет неспаренных атомных электронов. Комплексы такого рода весьма характерны для аминокарбоновых кислот.

Простейший их представитель — амииоуксусная кислота (глицин) — образует хелаты с ионами , например:

Известны также комплексы с более сложными амннокарбоно-выми кислотами и их аналогами. Такие лиганды называются комплексонами. Двухзарядный анион этилендиамиптетрауксусной кислоты, называемый в виде двунатриевой соли комплексоном III, или трилоном Б, дает с двухвалетным металлом комплекс типа:



Хелатные соединения отличаются особой прочностью, так как центральный атом в них как бы «блокирован» циклическим лигандом. Наибольшей устойчивостью обладают хелаты с пяти- и шестичленными циклами. Комплексоны настолько прочно связывают катионы металлов, что при их добавлении растворяются такие плохо растворимые вещества, как сульфаты кальция и бария, оксалаты и карбонаты кальция. Поэтому их применяют для умягчения воды, для маскировки «лишних» ионов металла при крашении и изготовлении цветной пленки. Большое применение они находят и в аналитической химии.

 

215.4 ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ В КОМПЛЕКСНЫХ СОЕДИНЕНИЯХ. ВТОРИЧНАЯ ДИССОЦИАЦИЯ КОМПЛЕКСОВ. КОНСТАНТА НЕСТОЙКОСТИ

Согласно методу валентных связей *, образование комплексных соединений * осуществляется за счет донорно-акцепторного *взаимодействия между комплексообразователем * и лигандами *. Обычно центральный атом имеет свободные орбитали *, а лигандыимеют неподеленные электронные пары. В образовании такой координационной связи могут участвовать ns-, np-, nd- или (n–1)d-орбитали, где n – номер внешнего электронного слоя комплексообразователя. Координационное число * определяется гибридизацией *орбиталей центрального атома:



КЧ
Гибридизация sp sp3, dsp2 sp3d2, d2sp3

 

Для примера рассмотрим образование координационных связей в ионе [Zn(NH3)4]2+. Здесь акцептором является ион Zn2+, имеющий вакантные орбитали на четвертом электронном слое и полностью занятый третий электронный слой. Четыре ковалентных связи * образуются с участием одной 4s- и трех 4p-орбиталей, которые перекрываются с орбиталями молекул аммиака (донор),содержащими неподеленные электронные пары:

Валентные орбитали цинка подвергаются sp3-гибридизации, поэтому лиганды (NH3) расположены в вершинах тетраэдра, в центре которого находится ион Zn2+.

Донорно-акцепторная связь в комплексных соединениях является весьма прочной, однако наряду с диссоциацией, в которой отщепляются ионы внешней сферы, в очень незначительной степени разрушается также внутренняя сфера комплекса *:

[Ag(NH3)2]Cl → [Ag(NH3)2]+ + Cl (первичная диссоциация)

[Ag(NH3)2]+ Ag+ + 2 NH3 (вторичная диссоциация)

Вторичная диссоциация подчиняется закону действия масс * и характеризуется соответствующей константой равновесия *, которая называется константой нестойкости комплексного иона:

Наиболее устойчивые комплексные соединения имеют наименьшие константы нестойкости. С помощью этих величин можно предсказать течение реакций между комплексными соединениями. Реакция протекает в сторону продуктов с меньшими константами нестойкости. Например, для иона [Ag(NH3)2]+ Kнест=6,8·10–8, а для иона аммония NH4+ Kнест=5,4·10–10, поэтому под действием кислот аммиакат серебра разрушается с образованием ионов Ag+ и NH4+:



[Ag(NH3)2]+ + 2 H+ Ag+ + 2 NH4+

Для комплекса [Pt(NH3)4]2+ Kнест=5·10–34, поэтому он не разрушается даже в концентрированной соляной кислоте.

Иногда вместо константы нестойкости используют обратную ей величину, называемую константой устойчивости: Kуст=1/Kнест. Значения этих констант можно найти в справочнике.

 


Дата добавления: 2014-12-30; просмотров: 19; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты