КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Щелочами называются растворимые в воде сильные основания.Рассмотрим еще раз типичные реакции нейтрализации между щелочью и кислотой при помощи структурных формул: Такая схема наглядно показывает различие между кислотами и основаниями: кислоты склонны отщеплять атомы водорода, а основания – гидрокси-группы. В реакцию нейтрализации с кислотами вступают любые основания, а не обязательно только щелочи. Разные основания имеют разную способность отщеплять гидрокси-группы, поэтому их, подобно кислотам, подразделяют на сильные и слабые основания (таблица 8-5). Сильные основания в водных растворах склонны легко отдавать свои гидрокси-группы, а слабые – нет. Таблица 8-5. Классификация оснований по силе.
** Не следует путать силу основания и его растворимость. Например, гидроксид кальция – сильное основание, хотя его растворимость в воде не велика. В данном случае сильным основанием (щелочью) мы называем ту часть гидроксида кальция, которая растворена в воде. Сила основания важна в реакциях со слабыми кислотами. Слабое основание и слабая кислота реагируют лишь в незначительной степени. Напротив, сильное основание легче реагирует с любой кислотой независимо от её силы.
Еще одно важное химическое свойство оснований – способность разлагаться при нагревании на воду и основной оксид. Cu(OH)2 = CuO + H2O (при нагревании) 2 Fe(OH)3 = Fe2O3 + 3 H2O (при нагревании) Растворы щелочей окрашивают индикаторы: лакмус – в синий цвет, фенолфталеин – в малиновый цвет. Индикатор метиловый оранжевый (или метилоранж) в растворах щелочей имеет желтый цвет. Подробнее об индикаторах можно прочитать в следующем параграфе. 3** §8.8 Соли. Получение и химические свойства. Рассмотрим важнейшие способы получения солей. 1. Реакция нейтрализации. Этот способ уже неоднократно встречался в предыдущих параграфах. Растворы кислоты и основания смешивают (осторожно!) в нужном мольном соотношении. После выпаривания воды получают кристаллическую соль. Например:
2. Реакция кислот с основными оксидами. Этот способ получения солей упоминался в параграфе 8-3. Фактически, это вариант реакции нейтрализации. Например:
3. Реакция оснований с кислотными оксидами (см. параграф 8.2). Это также вариант реакции нейтрализации:
Если пропускать в раствор избыток СО2, то получается избыток угольной кислоты и нерастворимый карбонат кальция превращается в растворимую кислую соль – гидрокарбонат кальция Са(НСО3)2: СаСО3 + Н2СО3 = Са(НСО3)2 (раствор) 4. Реакция основных и кислотных оксидов между собой:
5. Реакция кислот с солями. Этот способ подходит, например, в том случае, если образуется нерастворимая соль, выпадающая в осадок:
6. Реакция оснований с солями. Для таких реакций подходят только щелочи (растворимые основания). В этих реакциях образуется другое основание и другая соль. Важно, чтобы новое основание не было щелочью и не могло реагировать с образовавшейся солью. Например:
7. Реакция двух различных солей. Реакцию удается провести только в том случае, если хотя бы одна из образующихся солей нерастворима и выпадает в осадок:
Выпавшую в осадок соль отфильтровывают, а оставшийся раствор упаривают и получают другую соль. Если же обе образующиеся соли хорошо растворимы в воде, то реакции не происходит: в растворе существуют лишь ионы, не взаимодействующие между собой: NaCl + KBr = Na+ + Cl- + K+ + Br- Если такой раствор упарить, то мы получим смесь солей NaCl, KBr, NaBr и KCl, но чистые соли в таких реакциях получить не удается. 8. Реакция металлов с кислотами. В способах 1 – 7 мы имели дело с реакциями обмена (только способ 4 – реакция соединения. Но соли образуются и в окислительно-восстановительных реакциях. Например, металлы, расположенные левее водорода в ряду активности металлов (таблица 8-3), вытесняют из кислот водород и сами соединяются с ними, образуя соли:
9. Реакция металлов с неметаллами. Эта реакция внешне напоминает горение. Металл "сгорает" в токе неметалла, образуя мельчайшие кристаллы соли, которые выглядят, как белый "дым":
10. Реакция металлов с солями. Более активные металлы, расположенные в ряду активностилевее, способны вытеснять менее активные (расположенные правее) металлы из их солей:
Теперь рассмотрим химические свойства солей. Наиболее распространенные реакции солей – реакции обмена и окислительно-восстановительные реакции. Сначала рассмотрим примеры окислительно-восстановительных реакций. 1. Окислительно-восстановительные реакции солей. Поскольку соли состоят из ионов металла и кислотного остатка, их окислительно-восстановительные реакции условно можно разбить на две группы: реакции за счет иона металла и реакции за счет кислотного остатка, если в этом кислотном остатке какой-либо атом способен менять степень окисления. а) Реакции за счет иона металла. Поскольку в солях содержится ион металла в положительной степени окисления, они могут участвовать в окислительно-восстановительных реакциях, где ион металла играет роль окислителя. Восстановителем чаще всего служит какой-нибудь другой (более активный) металл. Приведем пример:
Принято говорить, что более активные металлы способны вытеснять другие металлы из их солей. Металлы, находящиеся в ряду активности левее , являются более активными. Нетрудно заметить, что это те же реакции металлов с солями (см. пункт 10 предыдущего раздела). б) Реакции за счет кислотного остатка. В кислотных остатках часто имеются атомы, способные изменять степень окисления. Отсюда –многочисленные окислительно-восстановительные реакции солей с такими кислотными остатками. Например:
2. Обменные реакции солей. Такие реакции могут происходить в растворах, когда соли реагируют: а) с кислотами, б) с щелочами, в) с другими солями. Например: а) CuSO4 + H2S = CuS↓ (осадок) + H2SO4 AgNO3 + HCl = AgCl↓ (осадок) + HNO3 б) FeCl3 + 3 NaOH = Fe(OH)3↓ (осадок) + 3 NaCl CuSO4 + 2 KOH = Cu(OH)2↓ (осадок) + K2SO4 в) BaCl2 + K2SO4 = BaSO4↓ (осадок) + 2 KCl CaCl2 + Na2CO3 = CaCO3↓ (осадок) + 2 NaCl Некоторые из этих реакций уже встречались в опытах из первой части параграфа. Во всех случаях один из продуктов обменной реакции обязательно должен покидать реакционную смесь в виде осадка или газообразного вещества. Либо должно получаться прочное соединение, не распадающееся в растворе на ионы (например, вода в реакции нейтрализации). Если эти условия не выполняется, то при смешивании реагентов в лучшем случае образуется смесь не реагирующих между собой ионов - реакция не идет.
4А́том (др. -греч. ἄτομος — неделимый) — наименьшая часть химического элемента, являющаяся носителем его свойств. Термин был введён ещё в V веке до н. э. Демокритом, основывавшемся на абстрактных размышлениях: «Сладость и горькость, жара и холод суть определения, на самом же деле [есть только] атомы и пустота» . В XIX веке умозрительная теория получила научное подтверждение. Однако в современном представлении атом является сложным, делимым телом, а в буквальном смысле как «неделимые» , точнее фундаментальные частицы, рассматриваются кварки, лептоны и калибровочные бозоны. Современное представление об атоме Сегодня общепринятой является модель атома, являющаяся развитием планетарной модели. Считается, что ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома) . Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Позиция атома в таблице Менделеева определяется количеством протонов, в то время как количество нейтронов на химические свойства практически не влияет; при этом нейтронов в ядре, как правило, больше, чем протонов (см. статью об атомном ядре) . Количество электронов в нейтральном состоянии по определению соответствует количеству протонов. Основная масса атома сосредоточена в ядре, в то время как массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра) . Массу атома принято измерять в атомных единицах массы, равных 1/12 от массы атома изотопа углерода 12C. Модели атомов Кусочки материи. Демокрит полагал, что свойства того или иного вещества определяются формой, массой, пр. характеристиками образующих его атомов. Так, скажем, у огня атомы остры, поэтому огонь способен обжигать, у твёрдых тел они шероховаты, поэтому накрепко сцепляются друг с дружкой, у воды — гладки, поэтому она способна течь. Даже душа человека, согласно Демокриту, состоит из атомов. 5Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральныхнейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом. Единственный стабильный атом, не содержащий нейтрон в ядре — лёгкий водород (протий). Единственный нестабильный атом без нейтронов - Гелий-2 (дипротон).[1] Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом. Количество протонов в ядре называется его зарядовым числом — это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуруэлектронной оболочки нейтрального атома и, таким образом, химические свойствасоответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называютсяизотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом ( ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называтьизобарами.
5-1Изото́пы (от др.-греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z(то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12C, 222Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например,дейтерий, актинон).
5-2Изоба́ры (в ед.ч. изоба́р; др.-греч. ἴσος (isos) — «одинаковый» + βάρος (baros) — «вес») — нуклиды разных элементов, имеющие одинаковое массовое число; например, изобарами являются 40Ar, 40K, 40Ca. Описание[править | править вики-текст] Хотя массовое число (т. е. число нуклонов) A = N + Z в ядрах-изобарах одинаково, числа протонов Z и нейтронов Nразличаются: , . Совокупность нуклидов с одинаковым A, но разным Z называют изобарической цепочкой. В то время как массовое число изобаров одинаково, их атомные массы совпадают лишь приближённо. Зависимость атомной массы (или избытка массы) от Z в изобарической цепочке показывает направление возможныхбета-распадов. Эта зависимость в первом приближении представляет собой параболу (см. формула Вайцзеккера) — сечение долины стабильности плоскостью A = const. Те виды радиоактивного распада, которые не изменяют массовое число (бета-распад, двойной бета-распад,изомерный переход), переводят одно ядро-изобар в другое. Поскольку распады такого рода происходят в направлении уменьшения избытка массы, последовательность таких распадов заканчивается на ядре, представляющем энергетический минимум в данной изобарической цепочке (бета-стабильное ядро). Для ядер с чётным массовым числом таких локальных минимумов на изобарической цепочке может быть от 1 до 3, поскольку чётно-чётные ядра (Z и N чётны) благодаря энергии спаривания имеют бо́льшую энергию связи, чем нечётно-нечётные ядра с тем же массовым числом. Локальные минимумы отличаются зарядом ядра на 2 единицы ( ), поэтому прямые бета-переходы между основными состояниями таких ядер невозможны (бета-распад изменяет заряд ядра на единицу). Переходы из локальных минимумов цепочки в глобальный возможны лишь благодаря двойным бета-процессам, которые являются процессами второго порядка по константе связи слабого взаимодействия и поэтому сильно подавлены: периоды полураспада превышают 1019 лет. Таким образом, для нечётных A существует один бета-стабильный изобар, для чётных A — от одного до трёх. Если альфа-распад (и другие виды распада, изменяющие массовое число) для бета-стабильного изотопа запрещён или сильно подавлен, то этот изотоп присутствует в природной смеси изотопов. В масс-спектрометрии изобарами называются как ядра с одинаковым массовым числом, так и молекулы с (приблизительно) одинаковой молекулярной массой. Так, молекулы 16O1H2H (полутяжёлой воды) являются молекулярными изобарами к атому 19F. Ионы таких молекул и атомов имеют почти одинаковое отношение масса/заряд (при равном заряде) и, следовательно, движутся в электромагнитных полях масс-спектрометра по почти одинаковой траектории, являясь источником фона для своих изобар. Для изобаров справедливо правило Щукарева — Маттауха, объясняющее, в частности, отсутствие стабильных изотопов у технеция[1].
6Квант (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения[1] — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты может принимать значения , где — редуцированная постоянная Планка, а — целое число. В этом случае имеет смысл энергии кванта излучения (иными словами, фотона), а — смысл числа́ этих квантов (фотонов). В смысле, близком к этому, термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей её основу. Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой. Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика, квантовая теория поля, квантовая оптика и т. д.). Широко применяется термин квантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется».
Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модельатома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: . 7Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием макроскопических объектов, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы)квантовой теории поля. Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать все явления на уровне молекул, атомов, электронов и фотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул, конденсированных сред, и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также других элементарных частиц, однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики. Основными понятиями квантовой кинематики являются понятия наблюдаемой исостояния. 8Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы. Некоторые квантовые числа связаны с движением в пространстве и характеризуют вид волновой функции частицы. Это, например, радиальное (главное) ( ), орбитальное ( ), магнитное ( ) и спиновое число квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента, его проекция на заданную ось и спин частицы, соответственно. Некоторые другие квантовые числа никак не связаны с перемещением в обычном пространстве, а отражают «внутреннее» состояние частицы. К таким квантовым числам относится спин и его проекция. В ядерной физикевводится также изоспин, а в физике элементарных частиц появляется цвет, очарование, прелесть (или красота[1]) иистинность.
93.1.3 Электронная структура атомов и периодическая система элементов При l=0, т.е. на s-подуровне *, имеется всего одна орбиталь *, которую принято изображать в виде клетки. В атоме Нединственный электрон находится на самом низком из возможных энергетических состояний, т.е. на s-подуровне первого электронного слоя (на 1s-подуровне). Электронную структуру атома Н можно представить схемой: В атоме гелия, порядковый номер которого в периодической системе * (или заряд ядра Z) равен 2, второй электрон тоже находится в состоянии 1s. Электронная структура атома гелия: У этого атома завершается заполнение ближайшего к ядру K-слоя и тем самым завершается построение первого периода системы элементов. Рассмотренные для атомов H и He способы описания электронных оболочек называются электронно-графическими формулами (орбитали изображаются в виде клеток) и электронными формулами (подуровни обозначаются буквами, а количество электронов на них указано верхним индексом). У следующего за гелием элемента лития (Z=3) третий электрон уже не может разместиться на орбитали K-слоя: это противоречило бы принципу Паули *. Поэтому он занимает s-состояние второго энергетического уровня (L-слой, n=2). Его электронная структура записывается формулой 1s22s1, что соответствует схеме: Далее формирование электронных оболочек у элементов 2-го периода происходит следующим образом: Для атома углерода уже можно предположить три возможных схемы заполнения электронных оболочек в соответствии с электронно-графическими формулами: Анализ атомного спектра показывает, что правильна последняя схема. Такой порядок размещения электронов в атоме углерода представляет собой частный случай общей закономерности, выражаемой правилом Хунда: устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором абсолютное значение суммарногоспина атома максимально. Пользуясь правилом Хунда, нетрудно составить схему электронного строения для атома азота (Z=7): Этой схеме соответствует формула 1s22s22p3. Затем начинается попарное размещение электронов на 2p-орбиталях. Электронные формулы остальных атомов второго периода: O 1s22s22p4 F 1s22s22p5 Ne 1s22s22p6 У атома неона заканчивается заполнение второго энергетического уровня, и завершается построение второго периода системы элементов. Третий период, подобно второму, начинается с двух элементов (Na, Mg), у которых электроны размещаются на s-подуровне внешнего электронного слоя. Такие элементы называются s-элементами (т.е. они относятся к s-семейству элементов). Затем следуют шесть элементов (от Al до Ar), у которых происходит формирование p-подуровня внешнего электронного слоя. Это атомы p-элементов (принадлежат к p-семейству). Структура внешнего электронного слоя соответствующих элементов второго и третьего периодов оказывается аналогичной. Иначе говоря, с увеличением заряда ядра электронная структура внешних слоев атомов периодически повторяется. Однако электронное строение атомов определяет свойства элементов и их соединений. В этом состоит сущностьпериодического закона: свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра. У атома аргона остаются незанятыми все орбитали 3d-подуровня. Однако у следующих за аргоном элементов – калия и кальция – заполнение 3-го электронного слоя временно прекращается, и начинает формироваться s-подуровень 4-го слоя. Такой порядок заполнения вытекает из первого правила Клечковского: при увеличении заряда ядра атомов заполнение энергетических уровней происходит оторбиталей с меньшим значением суммы главного * и орбитального * квантовых чисел (n+l) к орбиталям с большим значением этой суммы. Следовательно, 4s-подуровень (n+l=4) должен заполняться раньше, чем 3d (n+l=5). Для атома скандия возникает вопрос: какой из подуровней должен заполняться – 3d или 4p, т.к. сумма n+l для них одинакова и равна 5. В подобных случаях порядок заполнения определяется вторым правилом Клечковского, согласно которому при одинаковых значениях суммы (n+l) орбитали заполняются в порядке возрастания главного квантового числа n. Заполнение 3d-подуровня происходит у десяти элементов от Sc до Zn. Это атомы d-элементов. Затем начинается формирование 4p-подуровня (p-элементы от Ga до Kr). Как и атомы предшествующих благородных газов – неона и аргона – атом криптона характеризуется структурой внешнего электронного слоя ns2np6. Аналогично формируется пятый период. В шестом периоде после заполнения 6s-подуровня начинается заполнение 4f-подуровня, и следуют атомы f-элементов. В связи с тем, что у них внешним является шестой уровень, а электроны последовательно занимают 4-й уровень, лежащий гораздо ближе к ядру, то химические свойства всех этих f-элементов близки к лантану, поэтому их часто называют лантаноидами (в 7-м периоде f-элементы называются актиноидами). После 4f заполняется 5d и, наконец, 6p-подуровень, заполнением которого заканчивается построение шестого периода. Седьмой период не завершен, т.к. элементы с большим зарядом ядра оказываются очень неустойчивыми (легко протекаютядерные реакции). Порядок заполнения подуровней в соответствии с правилами Клечковского можно записать в виде последовательности: 1s → 2s→ 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p. Однако для некоторых элементов эта последовательность нарушается, т.е. из правил Клечковского имеются исключения. У атомов Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au имеет место “провал” электрона с s-подуровня внешнего слоя на d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома. Например, электронная формула атома меди имеет вид: Cu 1s2 2s2 2p6 3s2 3p6 3d10 4s1, т.е. один из двух 4s-электронов “проваливается” на 3d-подуровень. Особо следует отметить палладий, у которого “проваливаются” два электрона: Pd 1s2 2s22p6 3s2 3p6 4s2 4p6 4d10 5s0. Второй тип исключений из правила Клечковского состоит в том, что перед заполнением 4f-подуровня один электрон располагается на 5d-подуровне: La 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f0 5s2 5p6 5d1 6s2. У следующего элемента (церия) 5d-подуровень освобождается, и оба электрона располагаются на 4f-подуровне: Ce 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f2 5s2 5p6 5d0 6s2. Аналогично, в 7-м периоде у актиния последний из электронов располагается на 6d-подуровне (а не на 5f, как должно быть по правиламКлечковского). Структура периодической системы элементов Д.И. Менделеева. Периодическая система состоит из периодов и групп. Порядковый номер элемента в периодической системе равен заряду ядра, или количеству протонов в нем, а также количеству электронов в оболочке нейтрального атома. Период – последовательный ряд элементов, атомы которых различаются числом электронов в наружном слое. Каждый период начинается типичным металлом и завершается благородным газом. Номер периода совпадает со значением главного квантового числа *внешнего электронного уровня. Принадлежность элементов к группам и деление их на подгруппы зависит от структуры двух внешних слоев. В соответствии с количеством электронов в этих слоях элементы периодической системы разделены на 8 групп. Номер группы совпадает с числомвалентных электронов элемента. Валентными являются в первую очередь ns- и np-электроны (n – номер внешнего электронного слоя), а затем (n–1)d-электроны. Для примера рассмотрим электронные формулы хлора и марганца. Cl 1s22s22p63s23p5 Mn 1s22s22p63s23p63d54s2 Здесь подчеркнуты валентные электроны, количество которых в обоих случаях равно 7. В соответствии с этим Cl и Mn находятся в VII группе периодической системы. В каждой группе главную подгруппу образуют атомы s- и p-элементов, а побочную – атомы d- и f-элементов.
|