КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Примеры решения задач. Задача 1. . Зависимость пройденного телом пути от времени выражается уравнением (Задача 1. . Зависимость пройденного телом пути от времени выражается уравнением ( = 2 м/с, = 3 м/с2, = 5 м/с3). Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение.
Ответ: Задача 2.Тело брошено со скоростью под углом к горизонту. Принимая тело за материальную точку, определите нормальное и тангенциальное ускорение тела через 1,2 с после начала движения.
Проекция в процессе движения точки остается постоянной по величине и направлению. Проекция на ось изменяется. В точке С (рис 1.1) скорость направлена горизонтально, т.е. . Это означает, что , где - время, в течение которого материальная точка поднимается до максимальной высоты, или после подстановки . К моменту времени 1,2 с тело будет находиться на спуске. Полное ускорение в процессе движения направлено вертикально вниз и равно ускорению свободного падения . Нормальное ускорение равно проекции ускорения свободного падения на направление радиуса кривизны, а тангенциальное ускорение - проекции ускорения свободного падения на направление скорости движения (см. рис.1.1). Из треугольников скоростей и ускорений имеем: , , откуда , , где - скорость в момент времени После подстановки получаем: . . Ответ: , .
Задача 3. Колесо автомобиля вращается равнозамедленно. За время 2 мин оно изменило частоту вращения от 240 до 60 мин-1. Определите: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.
где - угловые скорости в начальный и конечный моменты времени соответственно. Из уравнения (2) получаем: . Угол поворота . Поэтому выражение (1) можно записать так . Отсюда: . Ответ: ; . Задача 4.Точка движется по окружности радиусом так, что зависимость угла поворота радиуса от времени дается уравнением , где , . Определите к концу второй секунды вращения: а) угловую скорость; б) линейную скорость; в) угловое ускорение; г) нормальное ускорение; д) тангенциальное ускорение.
|