КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теоретические основы. К металлам относятся химические элементы с небольшим числом электронов (13) на наружном энергетическом уровне их атомовК металлам относятся химические элементы с небольшим числом электронов (1...3) на наружном энергетическом уровне их атомов. Эти внешние электроны относительно слабо удерживаются ядром атома. Типичными металлами является большинство s-элементов (щелочные и щелочно-земельные металлы), атомы которых легко теряют валентные электроны, что отражается в низких значениях их электроотрицательности (см. приложение 1). Алюминий, галлий, бериллий, германий, олово, свинец и сурьма, как р-элементы проявляют уже амфотерные (т.е. металлические и неметаллические) свойства. В периодах, начиная с 3-его, между s-элементами и перечисленными амфотерными элементами располагаются d-элементы, для которых более характерны металлические, чем неметаллические свойства. В периодах с увеличением порядкового номера элемента, металлические свойства ослабевают, в группах, напротив, усиливаются. Если рассматривать только главные подгруппы, граница между металлами и неметаллами проходит примерно по диагонали В ¾ At. Побочные подгруппы включают только металлы. В окислительно-восстановительных реакциях металлы выступают в роли восстановителей: Мео - n ® Men+. Неметаллические простые вещества часто проявляют окислительно-восстановительную двойственность, т.е. в зависимости от условий, могут отдавать или принимать электроны, повышая или понижая степень окисления. Например: S2- S0 S+4 S+6 восстановление окисление
Для металлов характерны реакции с окислителями-неметаллами: Mn + Cl2 ® MnCl2 3Mg + N2 ® Mg3N2 2Zn + O2 ® 2ZnO Fe + S ® FeS Неметаллы взаимодействуют как с окислителями, так и с восстановителями: S + O2 ® SO2 (S - восстановитель) S + Н2 ® Н2S (S - окислитель) Взаимодействие металлов с водой, кислотами и щелочами протекает по-разному, в зависимости от активности металлов и их свойств, определяемых положением в периодической системе. Высокоактивные металлы (щелочные и щелочно-земельные) разлагают воду с вытеснением водорода и образованием гидроксидов: 2Na + 2H2O ® 2NaOH + H2
С растворами щелочей могут реагировать металлы, дающие амфотерные оксиды: Zn + 2NaOH + 2H2O ® Na2[Zn (OH)4] + H2 С кислотами металлы реагируют различно в зависимости от активности самого металла и окислительных свойств кислоты. Металлы, имеющие отрицательные значения стандартных электродных потенциалов (jо ≤ 0 В), могут вытеснять водород из растворов галогеноводородных и серной кислот. Cr + 2HCl ® CrCl2 + H2 Mn + H2SO4 ® MnSO4 + H2 Концентрированная серная кислота при взаимодействии с металлами может восстанавливаться до S0, S2- или до S+4: 4Zn + 5H2SO4 ® 4ZnSO4 + H2S + 4H2O Концентрированная серная кислота может при нагревании окислять металлы, которые в электрохимическом ряду, напряжений, находятся после водорода: Сu + 2H2SO4 CuSO4 + SO2 + 2H2O Азотная кислота является сильнейшим окислителем и при взаимодействии с металлами может восстанавливаться до солей аммония и оксидов азота (N2O , NO , NO2) в зависимости от активности металла и концентрации кислоты.
4Zn + 10HNO3 разб ® 4Zn(NO3)2 + NH4NO3 + 3H2O 4Zn + 10HNO3 конц ® 4Zn(NO3)2 + N2O + 5H2O 2Cu + 8HNO3 разб ® 3Cu(NO3)2 + 2NO + 4H2O Cu + 4HNO3 конц ® Cu(NO3)2 + 2NO2 + 2H2O
Окислительную способность азотной кислоты можно усилить, добавив к ней соляной кислоты («царская водка») или HF. Эти смеси растворяют самые пассивные металлы (Au, Pt). Оксиды неметаллов имеют кислотный характер, а соответствующие им гидроксиды являются кислотами. Например, N2O5 - оксид азота (V), ему соответствует азотная кислота HNO3: N2O5 + H2O ® 2HNO3 Оксиды и гидроксиды металлов могут быть основными (ВаО, K2O), амфотерными (ZnO, Al2O3) и кислотными (CrO3 , Mn2O7). Способность гидроксидов диссоциировать по кислотному типу тем больше, чем больше степень окисления атома металла и чем меньше его радиус. Поэтому в периоде с увеличением порядкового номера элемента усиливаются кислотные свойства соединений и ослабевают основные. Например:
NaOH, Mg(OH)2 - основания Al(OH)3 - амфотерный гидроксид H2SiO3, H3PO4, H2SO4, HClO4 - кислоты.
В группе с ростом порядкового номера элемента для однотипно построенных гидроксидов кислотные свойства ослабевают, основные - усиливаются.
Например: HNO3, H3PO4 - кислоты As(OH)3, Sb(OH)3 - амфотерные гидроксиды Bi(OH)3 - основание.
Если один и тот же элемент в разных степенях окисления образует несколько оксидов и гидроксидов, то кислотные свойства усиливаются с увеличением степени окисления. Например: Cr+2(OH)2 Cr+3(OH)3 H2Cr+6O4 основание амфотерный гидроксид кислота
Соединения основного характера взаимодействуют с веществами кислотного характера с образованием солей. Амфотерные соединения могут реагировать как с кислотными, так и с основными. Так, основные оксиды способны взаимодействовать с образованием солей: а)с амфотерными оксидами: Na2O + BeO Na2BeO2 (1); б)с кислотными оксидами: CaO + CO2 ® CaCO3 (2); в)с кислотами: CuO + 2HCl ® CuCl2 + H2O (3); г)с амфотерными гидроксидами: Na2O + Zn(OH)2 ® Na2ZnO2 + H2O (4); Характерными свойствами кислотных оксидов является их реакции: а)с амфотерными и основными оксидами: SiO2 + BeO BeSiO3 (5); б)с основными гидроксидами: SO2 + 2КОН ® К2SO3 + H2O (6); в)с амфотерными гидроксидами: 3SO3 + 2Al(ОН)3 ® Al2(SO4)3 + 3H2O (7). Амфотерные оксиды могут взаимодействовать как с кислотами, так и с основаниями, образуя при этом соли. Например, оксид цинка в реакции: ZnO + 2KOH ® K2ZnO2 + H2O (8) проявляет свойства кислотного оксида, а в реакции ZnO + Н2SO4 ® ZnSO4 + H2O (9) - свойства основного оксида. Многие оксиды растворяются в воде с образованием соответствующих кислот и щелочей: SO3 + H2O ® Н2SO4 (10), K2O + H2O ® 2KOH (11). В реакции (11) вступают только оксиды щелочных и щелочноземельных металлов. К важнейшим химическим свойствами оснований относится их способность взаимодействовать с образованием солей: а)с кислотами: Cu(OH)2 + 2HNO3 ® Cu(NO3)2 + H2O (12); б)с амфотерными гидроксидами: 2NaOH + Zn(OH)2 ® Na2ZnO2 + 2H2O (13); а также с кислотными и амфотерными оксидами (реакции 6 и 8, соответственно). Амфотерные гидроксиды могут взаимодействовать не только с основаниями, но и с кислотами: Al(OH)3 + 3HCl ® AlCl3 + 3H2O (14). Помимо перечисленных выше реакций, соли можно получить также следующими способами: а)взаимодействие гидроксида (щёлочи) с солью: 2KOH + FeSO4 ® Fe(OH)2 + K2SO4 (15); б)взаимодействие кислоты с солью: HCl + AgNO3 ® AgCl + HNO3 (16); в)взаимодействие соли с солью: BaCl2 + K2SO4 ® BaSO4 + 2KCl (17). Реакции в растворах электролитов (15, 16, 17) происходят в тех случаях, когда в числе продуктов есть слабый электролит, труднорастворимое или газообразное соединение. За исключением солей, образованных сильными основаниями и сильными кислотами. Все соли при растворении подвергаются гидролизу: Na2S + H2O ® NaHS + NaOH (18a) CuCl2 + H2O ® CuOHCl + HCl (18б) Подробнее о гидролизе солей см. [1], c.234 - 238.
С химическими свойствами соединений отдельных классов удобно знакомиться, используя таблицу 7. Приведённые в ней цифры означают возможность взаимодействия и соответствуют номеру описанных в тексте химических реакций.
Т а б л и ц а 7 Химические свойства неорганических соединений
|