Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Живое вещество — вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности.




Читайте также:
  1. F1x.2 Синдром зависимости.
  2. I. Прежде всего рассмотрим особенность суждений в зависимости от изменениясубъекта.
  3. IV. По характеру ответной реакции, в зависимости от того, какие органы в ней участвуют
  4. V.2. Правовые категории лиц в зависимости от status libertatis
  5. V.3. Правовые категории лиц в зависимости от status civitatis
  6. V.4. Правовые категории лиц в зависимости от status familiae
  7. Адаптация живых организмов к экологическим факторам
  8. Адсорбция на поверхности раздела твердое вещество — газ.
  9. Адсорбция на поверхности раздела твердое вещество — жидкость.
  10. Активные, пассивные и избегающие адаптации организмов к неблагоприятным факторам среды

Это понятие не следует путать с понятием «биомасса», которое является частью биогенного вещества.

Термин введён В.И. Вернадским

состав живого вещества входят как органические (в химическом смысле), так и неорганические, или минеральные, вещества. Вернадский писал:

Идея о том, что явления жизни можно объяснить существованием сложных углеродистых соединений – живых белков, бесповоротно опровергнута совокупностью эмпирических фактов геохимии... Живое вещество – это совокупность всех организмов.

Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6×1012 т (в сухом весе) и составляет менее 10−6 массы других оболочек Земли. Но это одна «из самых могущественных геохимических сил нашей планеты».

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы, литосферы и гидросферы. В условиях, не благоприятных для существования, живое вещество переходит в состояние анабиоза.

Специфика живого вещества заключается в следующем:

Живое вещество биосферы характеризуется огромной свободной энергией. В неорганическом мире по количеству свободной энергии с живым веществом могут быть сопоставлены только недолговечные незастывшие лавовые потоки.

2. Резкое отличие между живым и неживым веществом биосферы наблюдается в скорости протекания химических реакций: в живом веществе реакции идут в тысячи и миллионы раз быстрее.

3. Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).

4. Произвольное движение живого вещества, в значительной степени саморегулируемое. В.И. Вернадский выделял две специфические формы движения живого вещества: а) пассивную, которая создается размножением и присуща как животным, так и растительным организмам; б) активную, которая осуществляется за счет направленного перемещения организмов (она характерна для животных и в меньшей степени для растений). Живому веществу также присуще стремление заполнить собой все возможное пространство.



Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Кроме того, в отличие от неживого абиогенного вещества живое вещество не бывает представлено исключительно жидкой или газовой фазой. Тела организмов построены во всех трех фазовых состояниях.

6. Живое вещество представлено в биосфере в виде дисперсных тел – индивидуальных организмов. Причем, будучи дисперсным, живое вещество никогда не находится на Земле в морфологически чистой форме – в виде популяций организмов одного вида: оно всегда представлено биоценозами.

Живое вещество существует в форме непрерывного чередования поколений, благодаря чему современное живое вещество генетически связано с живым веществом прошлых эпох. При этом характерным для живого вещества является наличие эволюционного процесса, т.е. воспроизводство живого вещества происходит не по типу абсолютного копирования предыдущих поколений, а путем морфологических и биохимических изменений.

Живое вещество биосферы выполняет следующие основные функции: энергетическую, деструктивную, концентрационную и средообразующую.



Энергетическая функция выполняется зелеными растениями, которые в процессе фотосинтеза аккумулируют солнечную энергию в виде разнообразных химических соединений. Эта энергия распределяется внутри экосистемы в виде пищи между животными. В конечном счете, эта энергия рассеивается в окружающей среде. Однако часть ее может накапливаться в отмершем органическом веществе и переходить в ископаемое состояние, образуя залежи горючих полезных ископаемых – торфа, каменного угля и нефти, являющихся энергетической базой для человеческого общества.

Деструктивная функция заключается в разложении и минерализации мертвого органического вещества, химическом разложении горных пород и вовлечении образовавшихся минералов в биотический круговорот. Мертвое органическое вещество разлагается до простых неорганических соединений: углекислого газа, воды, сероводорода, метана, аммиака и др., которые вновь используются в начальном звене круговорота. Этим занимаются специальные организмы – редуценты, или деструкторы.

Концентрационная функция заключается в избирательном накоплении организмами в процессе жизнедеятельности атомов веществ, рассеянных в природе. Одной из характерных особенностей живого вещества является способность концентрировать химические элементы из разбавленных растворов. Наиболее активными концентратами являются микроорганизмы. Осуществление данной функции способствовало образованию залежей полезных ископаемых (известняка, мела и т.д.).

Средообразующая функция заключается в трансформации физико-химических параметров среды (атмосферы, литосферы и гидросферы) в условия, благоприятные для существования организмов. Эта функция является совместным результатом всех трех рассмотренных выше функций живого вещества биосферы. Благодаря этой функции живое вещество создало и поддерживает в равновесии баланс вещества и энергии в биосфере, поддерживает стабильность существования организмов. Живое вещество способно восстанавливать условия и места обитания, нарушенных в результате природных катастроф или хозяйственной деятельности человека.



38. Человек, как вид живых организмов, занимает экологическую нишу в экологической системе Земли. Причём, не произвольную нишу, а нишу, соответствующую возможностям и свойствам организма человека и его образа жизни, как стадного живого существа. Поэтому, появление человека, как вида, становится возможным только тогда, когда экологическая система Земли, при своём эволюционном развитии, ДОСТИГНЕТ такой сложности и многоуровневости, при которой появляются свободные экологические ниши, которые накладывают на виды, пытающиеся их освоить, определённые требования, адаптация к которым и приводит к появлению у этих видов НЕОБХОДИМЫХ СВОЙСТВ И КАЧЕСТВ для появление и развития РАЗУМА.

Другими словами, эволюционное развитие растительного мира, как фундамента пирамиды живой материи, на любой планете приводит к появлению РАЗУМА на определённом этапе своего развития. Каждая экологическая ниша предъявляет к виду, её занимающему, определённые требования, такие, как: размеры и формы живых организмов, качественный и количественный состав пищи, определённую периодичность жизненных процессов. Только ОРГАНИЗМЫ, КОТОРЫЕ СУМЕЛИ ПРИСПОСОБИТЬСЯ К ЭТИМ ТРЕБОВАНИЯМ И УСЛОВИЯМ, СМОГЛИ ВЫЖИТЬ В ХОДЕ ЭВОЛЮЦИИ.

Деятельность живых организмов в биосфере сопровождается извлечением из окружающей среды больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный (с участием живых организмов) круговорот веществ в природе, т. е. циркуляция веществ между литосферой, атмосферой, гидросферой и живыми организмами. Под круговоротом веществ понимают повторяющийся процесс превращения и перемещения веществ в природе, имеющий более или менее выраженный циклический характер.

В круговороте веществ принимают участие все живые организмы, поглощающие из внешней среды одни вещества и выделяющие в нее другие. Так, растения потребляют из внешней среды углекислый газ, воду и минеральные соли и выделяют в нее кислород. Животные вдыхают кислород, выделенный растениями, а поедая их, усваивают синтезированные из воды и углекислого газа органические вещества и выделяют углекислый газ, воду и вещества непереваренной части пищи. При разложении бактериями и грибами отмерших растений и животных образуется дополнительное количество углекислого газа, а органические вещества превращаются в минеральные, которые попадают в почву и снова усваиваются растениями. Таким образом, атомы основных химических элементов постоянно совершают миграцию из одного организма в другой, из почвы, атмосферы и гидросферы — в живые организмы, а из них—в окружающую среду, пополняя таким образом неживое вещество биосферы. Эти процессы повторяются бесконечное число раз. Так, например, весь атмосферный кислород проходит через живое вещество за 2 тыс. лет, весь углекислый газ — за 200—300 лет.

38. Как известно, все структурные компоненты биосферы тесно взаимосвязаны между собой сложными биогеохимическими циклами миграции веществ и энергии. Процессы взаимообмена и взаимодействия протекают на разных уровнях: между геосферами (атмо, гидро, литосферой), между природными зонами, отдельными ландшафтами, их морфологическими частями и т. д. Однако повсюду господствует единый генеральный процесс обмена веществом и энергией, процесс, порождающий явления разного масштаба — от атомарного до планетарного. Многие элементы, пройдя цепь биологических и химических превращений, возвращаются в состав тех же самых химических соединений, в которых они находились в начальный момент. При этом главной движущей силой в функционировании как глобального, так и малых (а также локальных) круговоротов, являются сами живые организмы.
Роль биогеохимических круговоротов в развитии биосферы исключительно велика, поскольку они обеспечивают многократность одних и тех же органических форм при ограниченном объеме исходного вещества, участвующего в круговоротах. Человечеству остается лишь поражаться тому, как мудро устроена природа, которая сама же подсказывает «непутевому Homo sapiens*, как следует организовать так называемое безотходное производство. Заметим однако, что в природе нет полностью замкнутых круговоротов: любой из них одновременно сомкнут и разомкнут. Элементарный пример частичного круговорота представляет собой вода, которая, испарив-шись с поверхности океана, частично снова попадает туда.
Между отдельными малыми круговоротами существуют сложные взаимосвязи, что в конечном итоге приводит к постоянному перераспределению вещества и энергии между ними, к устранению своего рода асимметричных явлений в развитии круговоротов. Так, в литосфере в избытке оказались в связанном состоянии кислород и кремний, в атмосфере в свободном состоянии — азот и кислород, в биосфере — водород, кислород и углерод. Нельзя не отметить также, что основная масса углерода сконцентрировалась в осадочных поро-дах литосферы, где карбонаты аккумулировали основную массу углекислого газа, поступившего в атмосферу с вулканическими извержениями.
Нельзя забывать и о том, что между космосом и Землей существует теснейшая связь, которую с известной долей условности следует рассматривать в рамках глобального круговорота (поскольку, как уже отмечалось, он не является замкнутым). Из космоса на нашу планету попадает лучистая энергия (солнечные и космические лучи), корпускулы Солнца и других звезд, метеоритная пыль и т. д. Особенно важна роль солнечной энергии. В свою очередь, Земля отдает обратно часть энергии, рассеивает в космос водород и т. д.
Многие ученые, начиная с В. И. Вернадского, рассматривая глобальный биогеохимический круговорот элементов в природе как один из важнейших факторов поддержания динамических равновесий в природе, различали в процессе его эволюции две стадии: древнюю и современную. Есть основания полагать, что на древней стадии круговорот был иным, однако из-за отсутствия многих неизвестных (названий элементов, их массы, энергии и т. д.) смоделировать круговороты прошлых геологических эпох («былые биосферы») практически невозможно.
К этому следует добавить, что основную часть живого вещества составляют С, О, Н, N, главными источниками питания растений являются СОг, ШО и другие минеральные вещества. С учетом значимости для биосферы углерода, кислорода, водорода, азота, а также специфической роли фосфора, кратко рассмотрим их глобальные круговороты, получившие название «частных» или «малых». (Существуют еще локальные кругообороты, ассоциирующиеся с отдельными ландшафтами.)

В.И.Вернадский вывел два фундаментальных закона (сам он назвал их «принципами») развития биосферы.

Первый биогеохимический закон — биогенная миграция химических элементов в биосфере стремится к своему максимальному проявлению. Анализ геологических данных показывает, что распространение жизни, живых существ (давление жизни) неуклонно нарастает. Живые организмы способны занимать самые различные экологические ниши, сохраняться в самых неблагоприятных условиях (в горячих и серных источниках, на дне океанов, на ледниках). Это дало основание говорить о «всюдности» жизни (термин Вернадского).

Второй биохимический закон — эволюция видов, приводящая к созданию форм жизни, устойчивых в биосфере, должна идти в направлении, увеличивающем проявление биогенной миграции атомов в биосфере. Согласно этому закону, в биосфере право на жизнь получают только виды, необходимые самой биосфере для выполнения определённых функций и усиления тем самым биогенной миграции химических элементов.

По законам Вернадского, биосфера на определённой стадии своего развития преобразуется в сферу разума — ноосферу.

40. Биосфера ? область жизни организмов, оболочка Земли, состав структура и энергетика которой в настоящем или прошлом обусловлена действием живых организмов. Законы развития и саморегуляции биосферы. 1-й закон биогенной миграции атомов Вернадского ? миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества, или же она протекает в среде, геохимические особенности которой обусловлены живым веществом как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей биологической эпохи. 2-й закон физико-химического единства живого вещества ? все живое вещество биосферы физико-химически едино.

Законы Голдсмита:

1) Закон сохранения информационной и соматической структуры биосферы.

2) Для сохранения структуры биосферы живое стремится к достижению состояния зрелости или экологического равновесия ? закон стремления к климаксу.

3-й закон экологического порядка ? целое оказывает влияние на части, а части на целое, в сумме это ведет к стабильности биосферы в целом. 4-й закон упорядоченности заполнения пространства и пространственно-временной определенности ? заполнение пространства внутри природных систем из-за взаимодействия между ее подсистемами упорядоченно так, что позволяет реализоваться гомеостатичным свойствам системы с минимальными противоречиями между частями внутри нее. Правило автоматического поддержания глобальной среды обитания ? живое вещество в ходе саморегуляции и взаимодействия с абиотическими факторами автодинамично поддерживает среду жизни, пригодную для развития. Принцип Роде ? живое происходит только от живого, между живым и неживым проходит граница, несмотря на их постоянное взаимодействие. В биосфере существуют 2-а основных круговорота: большой геологический (разрушение, выветривание, отложение в океане, круговорот воды и циркуляция атмосферы) и биологический (часть БГ, заключается в том, что питательные вещества, вода аккумулируется в веществе растений, расходуются на построение тела и осуществления жизненных процессов, как их самих, так и консументов).

41. КОНЦЕПЦИЯ УСТОЙЧИВОГО РАЗВИТИЯ - модель развития цивилизации, которая исходит из необходимости обеспечить мировой баланс между решением социально-экономических проблем и сохранением окружающей среды. Впервые термин «устойчивое развитие» введен в докладе «Наше общее будущее», представленном в 1987 г. Всемирной комиссией ООН по окружающей среде и развитию под руководством Гру Харлем Брунтланд. Им обозначалась такая модель развития общества, при которой удовлетворение жизненных потребностей нынешнего поколения людей достигается не за счет лишения такой возможности будущих поколений.

Необходимость принятия концепции устойчивого развития обусловлена общепланетарной угрозой деградации окружающей среды. Эта угроза вызвана негативными последствиями научно-технического прогресса. Она усиливается взрывоопасным приростом населения в развивающихся странах. Все это углубляет дисбалансы между природой, человеком и обществом. Возможность перехода на рельсы устойчивого развития связана с разрешением или по крайней мере со смягчением ряда коренных противоречий между национально-государственными интересами и интересами мирового сообщества, интересами отдельных стран и регионов, требованиями устойчивого развития и интересами транснациональных корпораций (ТНК) и др. Поэтому такой переход требует формирования эффективных механизмов природоохранного регулирования. Он предполагает развитие новых ресурсосберегающих и экологически чистых технологий.

На Конференции ООН по окружающей среде и развитию (КОСР) в июне 1992г. в Рио-де-Жанейро была принята Декларация, в которой провозглашены обязательства государств по основным принципам достижения нашей цивилизацией устойчивого развития

Термин "устойчивое развитие" первоначально появился в природопользовании, в частности в рыбном и лесном хозяйстве. Под этим термином понималась система эксплуатации природных ресурсов, при которой они не истощаются и имеют возможность естественного воспроизводства.

Важнейшей отправной точкой всей концепции устойчивого развития стал доклад Римского клуба[1]

"Пределы роста", изданного в 1972 году. В нем впервые было показано, что природные ресурсы почти исчерпаны (нефть, газ, руды и т.д.), рост индустрии подошел к своим пределам и нужна новая концепция устойчивого развития мира. В результате во многих странах были приняты законы об охране окружающей среды, начали осуществляться перевод промышленного производства из крупных городов, закрытие вредных производств (угольные шахты, разрезы, карьеры и т.д.) и др.

В 1980-х годах термин «устойчивое развитие» был использован в отчете Комиссии Брундтланд [2] , сформированной ООН в целях разработки конкретных предложений по решению экологических проблем.

В 1987 году после нескольких лет работы Комиссия пришла к выводу, что решение экологических проблем невозможно без решения социальных и экономических вопросов и об устойчивом развитии необходимо говорить в широком смысле. В докладе, представленном Комиссией в ООН, понятие устойчивого развития определяется следующим образом: "Устойчивое развитие - это такое развитие, которое удовлетворяет потребности настоящего времени, но не ставит под угрозу способность будущих поколений удовлетворять свои собственные потребности". К определению был дан следующий комментарий: "Устойчивое и долгосрочное развитие представляет собой не неизменное состояние гармонии, а скорее процесс изменений, в котором масштабы эксплуатации ресурсов, направление капиталовложений, ориентация технического развития и институциональные изменения согласуются с нынешними и будущими потребностями».

"Устойчивое развитие - это такое развитие, которое удовлетворяет потребности настоящего времени, но не ставит под угрозу способность будущих поколений удовлетворять свои собственные потребности". К определению был дан следующий комментарий: "Устойчивое и долгосрочное развитие представляет собой не неизменное состояние гармонии, а скорее процесс изменений, в котором масштабы эксплуатации ресурсов, направление капиталовложений, ориентация технического развития и институциональные изменения согласуются с нынешними и будущими потребностями».

Ри́мский клуб — международная общественная организация, созданная итальянским промышленником Аурелио Печчеи (который стал его первым президентом) и генеральным директором по вопросам науки ОЭСР Александром Кингом 6-7 апреля 1968 года, объединяющая представителей мировой политической, финансовой, культурной и научной элиты. Организация внесла значительный вклад в изучение перспектив развития биосферы и пропаганду идеи гармонизации отношений человека и природы.

Одной из главных своих задач Римский клуб изначально считал привлечение внимания мировой общественности к глобальным проблемам посредством своих докладов. Заказ Клуба на доклады определяет только тему и гарантирует финансирование научных исследований, но ни в коем случае не влияет ни на ход работы, ни на её результаты и выводы; авторы докладов, в том числе и те из них, кто входит в число членов Клуба, пользуются полной свободой и независимостью. Получив готовый доклад, Клуб рассматривает и утверждает его, как правило, в ходе ежегодной конференции, нередко в присутствии широкой публики — представителей общественности, науки, политических деятелей, прессы, — а затем занимается распространением результатов исследования, публикуя доклады и проводя их обсуждение в разных аудиториях и странах мира.

Проект Д.Медоуза (en) «Пределы роста» (1972) — первый доклад Римскому клубу, завершил исследование Форрестера. Но метод «системной динамики», предложенный Медоузом, не годился для работы с региональной мировой моделью, поэтому модель Медоуза вызвала ожесточенную критику. Тем не менее, модели Форрестера-Медоуза был придан статус первого отчета Римского Клуба. Доклад «Пределы роста» положил начало целому ряду докладов Клуба, в которых получили глубокую разработку вопросы, связанные с экономическим ростом, развитием, обучением, последствиями применения новых технологий, глобальным мышлением. В 1974 году вышел второй доклад Клуба. Его возглавили члены Римского клуба М. Месарович (en) и Э. Пестель. «Человечество на перепутье» предложило концепцию «органического роста», согласно которой каждый регион мира должен выполнять свою особую функцию, подобно клетке живого организма. Концепция «органического роста» была всецело принята Римским клубом и до сих пор остается одной из основных отстаиваемых им идей.

Модели Медоуза—Форрестера и Мессаровича—Пестеля заложили основу идеи ограничения потребления ресурсов за счет так называемых промышленно слаборазвитых стран. Предложенная учеными методика была востребована правительством США для прогнозирования и соответственно активного воздействия на процессы, происходящие в Мире.


Дата добавления: 2015-01-01; просмотров: 39; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.029 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты