Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Почему применение современных информационных технологий повышает качество управления 2 страница




В 1995 году появился стан­дарт на более быструю версию Ethernet, работающую на скорости 100 Мбит/с (так называемый Fast Ethernet, стандарт 1ЕЕЕ 802.3u), использу­ющую в качестве среды передачи витую пару или оптоволоконный ка­бель. Появилась версия на скорость 1000 Мбит/с (Gigabit Ethernet, стан­дарт IEEE 802.3z). Поговорим немного о причинах перехода на Fast Ethernet.

К началу 90-х годов пропускной способности сети - 10 Мбит/с уже было недостаточно для некоторых потребностей пользователей. В этот период особенно интенсивными темпами стали развиваться компьютерные технологии в целом. Стали широко распространяться новые, более мощные компьютеры с новой, более скоростной шиной передачи данных, а также более мощное и усовершенствованное сетевое оборудование. Так, в середине 90-х появились, и сразу стали массово применятся в локальных сетях, - коммутаторы. Коммутаторы имеют большое количество портов и обеспечивают передачу кадров между портами одновременно, что само собой предусматривает существенное повышение производительности сети. В это же время уже появились первые экспериментальные сети, в которых использовался протокол Ethernet с более высокой битовой скоростью передачи данных, а именно 100 Мб/с. Надо сказать, что до этого только технология Fiber Distributed Data Interface (FDDI), которая использует оптоволоконную среду передачи данных, обеспечивала такую битовую скорость. Но тот момент она была специально разработана для построения магистралей сетей и была слишком дорогой для подключения к сети отдельных рабочих станций или серверов.

Таким образом, назрела необходимость в разработке "нового" Ethernet, то есть технологии, которая была бы такой же простой и эффективной по соотношению цена/качество, но обладала бы производительностью не менее, чем на порядок выше, а именно - 100 Мбит/с.

Этой задачей серьезно заинтересовались многие ведущие лидеры среди производителей сетевых технологий. В результате поисков и исследований на пути к решению задачи, специалисты разделились на два лагеря, что, в конечном итоге привело к появлению двух новых технологий - Fast Ethernet и 100VG-AnyLAN.

Эти две технологии отличаются степенью преемственности с классическим Ethernet. Fast Ethernet оставила самую основу работы технологии Ethernet - метод доступа CSMA/CD, а 100VG-AnyLAN отказалась от него. Но, давайте рассмотрим все по порядку.

В 1992 году группа производителей сетевого оборудования, включая таких лидеров технологии Ethernet, как SynOptics, 3Com и ряд других, образовали некоммерческое объединение Fast Ethernet Alliance для разработки стандарта новой технологии, которая должна была в максимально возможной степени сохранить особенности технологии Ethernet.

Второй лагерь возглавили компании Hewlett-PackardиAT&T, которые предложили воспользоваться удобным случаем для устранения некоторых известных недостатков технологии Ethernet.

В комитете 802 института IEEE в это же время была сформирована отдельная исследовательская группа для изучения потенциала новых высокоскоростных технологий. За период с конца 1992 года и по конец 1993 года группа IEEE провела серьезную работу над изучением всех 100-мегабитных решений, которые были предложены различными производителями. Группа IEEE 802 наряду с предложениями Fast Ethernet Alliance рассмотрела также и высокоскоростную технологию, предложенную компаниями Hewlett-Packard и AT&T.

В центре дискуссий была проблема сохранения случайного метода доступа CSMA/CD в новой технологии.

Название CSMA/CD можно разбить на две части:

- Carrier Sense Multiple Access

- Collision Detection.

Из первой части имени можно заключить, каким образом узел с сетевым адаптером определяет момент, когда ему следует послать сообщение. В соответствии с методом CSMA, станция вначале "слушает" сеть, чтобы определить, не передается ли в данный момент какое-либо другое сообщение. Если прослушивается несущий сигнал (carrier tone), значит, в данный момент сеть занята другим сообщением, - станция переходит в режим ожидания и пребывает в нем, пока сеть не освободится. Когда в сети наступает молчание, станция начинает передачу. Фактически данные посылаются всем станциям сети или сегмента, но принимаются только той станцией, которому они адресованы.

Collision Detection - вторая часть имени - служит для разрешения ситуаций, когда две или более станции пытаются передавать сообщения одновременно. Согласно методу CSMA, каждый готовая к передаче станция должна вначале слушать сеть, чтобы определить, свободна ли она. Однако, если две станции "слушают сеть" в одно и тоже время, и в какой-то момент времени обе решат, что сеть свободна, то они начнут передавать свои кадры одновременно. В этой ситуации передаваемые кадры накладываются друг на друга - происходит коллизия, и в итоге ни один кадр не доходит до пункта назначения. Для надежного определения коллизий нужно, чтобы станция "наблюдала сеть" и после передачи кадра. Если обнаруживается коллизия, то станция повторяет передачу после случайной паузы и вновь проверяет, не произошла ли коллизия, и только после 16-й неудачной попытки передачи кадра в сеть он отбрасывается. Метод CSMA/CD "притягивает" разработчиков своей простотой реализации, но одновременно и предполагает разработку дополнительных средств, которые смогли бы исправить его недостатки, связанные с влиянием задержек распространения сигнала.

Сетевая технология, предложенная Fast Ethernet Alliance, сохранила метод CSMA/CD, и тем самым обеспечила согласованность сетей со скоростями 10 Мбит/с и 100 Мбит/с.

Коалиция HP и AT&T, которая имела поддержку значительно меньшего числа производителей в сетевой индустрии, чем Fast Ethernet Alliance, предложила совершенно новый метод доступа, названный Demand Priority - приоритетный доступ по требованию. Он существенно менял картину поведения узлов в сети, поэтому не смог вписаться в технологию Ethernet и стандарт 802.3, поэтому для его стандартизации был организован новый комитет IEEE 802.12.

Осенью 1995 года обе технологии стали стандартами IEEE. Комитет IEEE 802.3 принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав с 21 по 30.

А комитет 802.12 в это же время принял новую технологию 100VG-AnyLAN, которая использует новый метод доступа Demand Priority. О ней мы поговорим несколько позже. А в этом разделе мы займемся изучением того, что же нового принесла технология Fast Ethernet

 

7.3.3 Технология Fast Ethernet

Главным коммерческим аргументом технологии Fast Ethernet стало то, что она базируется на наследуемой технологии Ethernet:

1. Так как в Fast Ethernet используется тот же метод передачи пакетов и кабельные системы совместимы, то для перехода к стандарту Fast Ethernet от стандарта Ethernet требуются меньшие капитальные вложения, чем для установки других видов высокоскоростных сетей.

2. Поскольку Fast Ethernet представляет собой продолжение стандарта Ethernet, все инструментальные средства и процедуры анализа работы сети, а также все программное обеспечение должны в данном стандарте сохранить работоспособность, следовательно, среда Fast Ethernet будет знакома администраторам сетей, имеющим опыт работы с Ethernet, а значит, обучение персонала займет меньше времени и обойдется существенно дешевле.

3. Решение оставить метод CSMA/CD без изменения принесло наибольшую практическую пользу новой технологии среды Fast Ethernet.

Итак, новая технология Fast Ethernet сохранила весь MAC уровень классического Ethernet, но пропускная способность была повышена до 100 Мбит/с., следовательно, поскольку пропускная способность увеличилась в 10 раз, то битовый интервал уменьшился в 10 раз, и стал теперь равен 0,01 мкс.

Поэтому в технологии Fast Ethernet время передачи кадра минимальной длины в битовых интервалах осталось тем же, но равным 5,75 мкс.

Ограничение на общую длину сети Fast Ethernet уменьшилось до 200 метров.

Использование коммутаторов, которые передают данные по нескольким портам одновременно и тем самым сокращают общую длину сети, сняло ограничения на общую длину сети, остались только ограничения на длину физических сегментов, соединяющих соседние устройства (сетевой адаптер - коммутатор или коммутатор - коммутатор). Поэтому при создании магистралей локальных сетей большой протяженности технология Fast Ethernet также активно, применяется, но только совместно с коммутаторами.

Увеличения пропускной способности при неизменном методе доступа в Fast Ethernet удалось достигнуть за счет усовершенствования средств физического уровня. Рассмотрим физический уровень технологии Fast Ethernet

Физический уровень технологии Fast Ethernet

Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же, и их описывают прежние главы стандартов 802.3 и 802.2.

Технология Fast Ethernet использует три варианта кабельных систем:

- волоконно-оптический многомодовый кабель, используются два волокна;

- витая пара категории 5, используются две пары;

- витая пара категории 3, используются четыре пары.

Коаксиальный кабель, давший миру первую сеть Ethernet, в этот перечень вообще не попал. От коаксиальных кабелей стремятся избавиться все новые технологии. Поскольку на небольших расстояниях, витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, а сеть при этом получается более дешевой и удобной в эксплуатации. На больших же расстояниях применяют оптическое волокно, которое обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе.

Сети Fast Ethernet всегда имеют иерархическую древовидную структуру, построенную на концентраторах, как и сети стандартов 10Base-T и 10Base-F, которые мы рассматривали в предыдущем разделе.

Таким образом, официальный стандарт 802.3u установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:

- 100Base-TX - для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1;

- 100Base-T4 - для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

- 100Base-FX- для многомодового оптоволоконного кабеля, используются два волокна.

По сравнению с вариантами физической реализации Ethernet (10Base-5, 10Base-2, 10Base-T, 10Base-F), в технологии Fast Ethernet отличия одного варианта от другого намного глубже. Различные физические спецификации имеют различное количество проводников и различные методы кодирования.

Для всех трех стандартов Fast Ethernet справедливы следующие характеристики:

форматы кадров технологии Fast Ethernet практически не отличаются от форматов кадров технологий 10-мегабитного Ethernet.

межкадровый интервал (IPG) равен 0,96 мкс, а битовый интервал равен 10 нс, соответственно время передачи кадра минимальной длины равно 5,75 мкс. Все временные параметры алгоритма доступа (интервал отсрочки, время передачи кадра минимальной длины и т. п.) в битовых интервалах, остались прежними.

признаком свободного состояния среды является передача по ней последовательности символов - Idle, а не отсутствие сигналов, как в стандартах Ethernet 10 Мбит/с.

Для сравнения следующий рисунок показывает общее отличие кадров Fast Ethernet от кадров 10-мегабитного Ethernet.

Рис. 7.4 Форматы кадров Fast Ethernet и Ethernet

 

Рассмотрим физические спецификации, которые предложила технология Fast Ethernet.

1. 100Base-FX - многомодовое оптоволокно, два волокна

Эта спецификация определяет работу протокола Fast Ethernet по многомодовому оптоволокну. Каждый узел соединяется с сетью двумя оптическими волокнами, идущими от приемника (Rх) и от передатчика (Тх).

Следует сразу отметить, что между спецификациями 100Base-FXи100Base-TX есть много общего, поэтому общие для этих двух спецификаций свойства мы будем рассматривать под обобщенным названием 100Base-FX/TX.

Все стандарты физического уровня Ethernet со скоростью передачи 10 Мбит/с для представления данных при передаче по кабелю используют манчестерское кодирование. В стандарте Fast Ethernet в спецификации 100Base-FX/TX используется другой метод - кодирование избыточными кодами - 4В/5В.

Вспомним некоторые особенности 4В/5В. При этом методе каждые 4 бита данных подуровня MAC (называемых символами) представляются 5 битами. Избыточный бит позволяет потом применить потенциальные коды при представлении каждого из пяти бит в виде электрических или оптических импульсов для непосредственной передачи по кабелю. Потенциальные коды по сравнению с манчестерскими кодами имеют более узкий спектр сигнала, а, следовательно, предъявляют меньшие требования к полосе пропускания кабеля. Но использовать "чистые" потенциальные коды для передачи данных невозможно использовать из-за плохой самосинхронизации приемника и источника данных: при передаче длинной последовательности единиц или нулей в течение долгого времени сигнал не изменяется и приемник не может определить момент чтения очередного бита. Применение избыточного кода решает проблему длительной последовательности нулей.

При использовании пяти бит для кодирования шестнадцати исходных 4-х битовых комбинаций, можно построить такую таблицу кодирования, в которой любой исходный 4-х битовый код представляется 5-ти битовым кодом с чередующимися нулями и единицами. Тем самым обеспечивается синхронизация приемника с передатчиком.

Так как из 32 возможных комбинаций 5-битовых порций для кодирования порций исходных данных нужно только 16, то остальные 16 комбинаций в коде 4В/5B используются в служебных целях.

Наличие служебных символов позволило использовать в спецификациях FX/TX схему непрерывного обмена сигналами между передатчиком и приемником и при свободном состоянии среды. И если в сетях Ethernet незанятое состояние среды означало полное отсутствие на ней импульсов информации. То для Fast Ethernet для обозначения незанятого состояния среды используется служебный символ Idle (11111), которыми постоянно обмениваются передатчик с приемником. Этот специфический символ (запрещенная комбинация) поддерживает синхронизм передатчика и приемника в периодах между передачами информации, а также позволяет контролировать общее физическое состояние линии.

Рис. 7.5 Обмен служебными символами Idle

 

Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, и это существенно повышает устойчивость работы сетей с 100Base-FX/TX уже на самом низком - физическом уровне, а значит, приводит к увеличению эффективности сети в целом.

Для отделения кадра Ethernet от символов Idle используется комбинация символов Start Delimiter (пара символов J (11000) и К (10001) кода 4В/5В, а после завершения кадра перед первым символом Idle вставляется символ Т. Надо отметить, что коды 4В/5В построены так, что гарантируют не более трех нулей подряд при любом сочетании бит в исходной информации, поэтому длительные последовательности нулей здесь исключены.

Рис. 7.5 Структура кадра для спецификаций 100Base-FX/TX.

 

Однако по кабелю все-таки передаются электрические сигналы, а не биты информации. Поэтому, после преобразования 4-битовых порций кодов MAC в 5-битовые порции физического уровня, когда решилась проблема синхронизации приемника и передатчика при передаче кадров, их теперь нужно представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Тут спецификации 100Base-FX и 100Base-TX расходятся в методах. И используют для этого различные методы физического кодирования - NRZI и MLT-3 соответственно.

Вспомним, что NRZI - это код без возврата к нулю с инвертированием для единиц. Но он в отличие от NRZ, для представления 1 и 0 использует дифференциальное кодирование: если текущий бит имеет значение 1, то текущий потенциал представляет собой инверсию потенциала предыдущего бита, независимо от его значения, если же текущий бит имеет значение 0, то текущий потенциал повторяет предыдущий. Этот метод поборол проблему длинных последовательностей единиц, которая была в NRZ, но оставил проблему длинных последовательностей нулей. Но эти последовательности в спецификации 100Base-FX, как и в 100Base-ТX предварительно устраняются кодированием 4B/5B.

Метод MLT3 еще более быстрый, по сравнению с методом NRZI, хотя и использует три уровня и он используется спецификации 100Base-ТX.

2. 100Base-TX - витая пара UTP Cat 5 или STP Type 1, две пары

В качестве среды передачи данных спецификация 100Base-TX использует неэкранированную витую витую пару UTP категории 5 или экранированную витую пару STP Type 1. Максимальная длина кабеля в обоих случаях - 100 м.

Самая отличительная возможность физического стандарта 100Base-TX - наличие специальной функции автопереговоров (Auto-negotiation). Она предназначена для согласованной работы Fast Ethernet со стандартами Ethernet. Схема автопереговоров позволяет двум соединенным физически устройствам, которые поддерживают несколько стандартов физического уровня, отличающихся битовой скоростью и количеством витых пар, выбрать наиболее выгодный режим работы. Обычно процедура автопереговоров происходит при подсоединении сетевого адаптера, который может работать на скоростях 10 и 100 Мбит/с, к концентратору или коммутатору. Схема Auto-negotiation сегодня является стандартом и технологии 100Base-T. До этого производители применяли различные собственные схемы автоматического определения скорости работы взаимодействующих портов, которые не были совместимы.

Принятую в качестве стандарта схему Auto-negotiation предложила первоначально компания National Semiconductor под названием NWay.

Всего в настоящее время определено 5 различных режимов работы, которые могут поддерживать устройства стандарта 100Base-TX или 100Base-T4 на витых парах:

- 10Base-T - работа с 2-мя парами категории 3;

- 10Base-T full duplex - работа с 2-мя парами категории 3 в полнодуплексном режиме

- 100Base-TX - используются 2 витые пары категории 5 (или Type 1A STP);

- 100Base-T4 - используются 4 витые пары категории 3;

- 100Base-TX full-duplex – работа с 2-мя витыми парами категории 5 (или Type 1A STP) в полнодуплексном режиме.

Режим 10Base-T имеет самый низкий приоритет при переговорном процессе, а полнодуплексный режим 100Base-T4 - самый высокий.

Переговорный процесс начинается, как только устройство (сетевой адаптер, концентратор, коммутатор) включается в сеть питания. Устройство, начавшее процесс auto-negotiation, посылает своему партнеру пачку специальных импульсов Fast Link Pulse burst (FLP). Эти импульсы содержат 8-битное слово, которое определяет, в каком режиме нужно установить взаимодействие. Если узел-партнер поддерживает функцию auto-negotuiation и также может поддерживать предложенный режим, он отвечает также пачкой импульсов FLP, в которой подтверждает данный режим, и на этом переговоры заканчиваются. Но, если же узел-партнер может поддерживать менее приоритетный режим, то он указывает его в ответе, и этот режим выбирается в качестве рабочего. Таким образом, всегда выбирается наиболее приоритетный общий режим узлов.

3. 100Base-T4 - витая пара UTP Cat 3, четыре пары

Спецификация 100Base-T4 появилась позже всех других спецификаций физического уровня Fast Ethernet. Спецификация 100Base-T4 была разработана для того, чтобы можно было использовать уже имеющуюся проводку на витой паре категории 3. Общую пропускную способность эта спецификация позволяет повысить за счет одновременной передачи потоков бит по всем 4 парам кабеля. Вместо кодирования 4В/5В в этом методе используется кодирование 8В/6Т, которое обладает более узким спектром сигнала и при скорости 33 Мбит/с укладывается в полосу 16 МГц витой пары категории 3 (при кодировании 4В/5В спектр сигнала в эту полосу не укладывается).

При методе кодирования 8В/6Т каждые 8 бит данных уровня MAC кодируются 6-ю троичными цифрами, то есть цифрами, имеющими три состояния. Каждая такая троичная цифра имеет длительность 40 нс. Группа из 6-ти троичных цифр затем передается на одну из трех передающих витых пар, независимо и последовательно. Четвертая пара всегда используется для прослушивания несущей частоты в целях обнаружения коллизии.

Скорость передачи данных по каждой из трех передающих пар равна 33,3 Мбит/с,поэтому общая скорость протокола 100Base-T4 составляет 100 Мбит/с.На рисунке 7.6 приведен пример подключения устройств по стандарту 100Base-T4. Пара 1-2 всегда требуется для передачи данных от порта адаптера к порту концентратора, пара 3-6 -для приема данных портом адаптера от порта концентратора, а пары 4-5 и 7-8 являются двунаправленными и используются как для приема, так и для передачи, в зависимости от потребности.

В заключение следует заметить, что сеть Ethernet благодаря мощной поддержке, высочайшему уровню стандартизации, огромным объемам выпуска технических средств резко выделяется сре­ди других стандартных сетей, и поэтому любую другую сетевую техно­логию принято сравнивать именно с Ethernet.

 

Рис. 7.6 Подключение сетевого адаптера к концентратору по 100Base-T4

 

 

7.4. Технология Gigabit Ethernet (802.3z)

Через непродолжительное время после появления на рынке продуктов Fast Ethernet сетевые администраторы почувствовали определенные ограничения при построении корпоративных сетей. Во многих случаях серверы, подключенные по 100-мегабитному каналу, сильно перегружали магистрали сетей, работающие также на скорости 100 Мбит/с - магистрали FDDI и Fast Ethernet. Стала ощущаться потребность в следующем уровне иерархии скоростей. В 1995 году более высокий уровень скорости могли предоставить только коммутаторы технологии АТМ, но она на то время еще не использовалась в локальных сетях, в частности из-за своей очень высокой стоимости. Поэтому июне 1995 года (через 5 месяцев после окончательного принятия стандарта Fast Ethernet) исследовательской группе по изучению высокоскоростных технологий IEEE было предписано заняться рассмотрением возможности разработки стандарта Ethernet с еще более высокой битовой скоростью. Летом 1996 года было объявлено о создании группы 802.3z для разработки протокола Gigabit Ethernet, максимально подобного Ethernet, но с битовой скоростью 1000 Мбит/с.

Для работы над согласованиями усилий в Gigabit Ethernet Alliance с самого начала вошли такие лидеры сетевых разработок, как Bay Networks,Cisco Systems и 3Com. Всего за год своего существования количество участников Gigabit Ethernet Alliance существенно выросло и стало насчитывать более 100.

Первая версия стандарта Gigabit Ethernet была рассмотрена в январе 1997 года, а окончательно стандарт 802.3z был принят 29 июня 1998 года на заседании комитета IEEE 802.3.Работы по реализации Gigabit Ethernet на витой паре категории 5 были переданы специальному комитету 802.Заb, который окончательно принял стандарт 802.3ab в сентябре 1999 года.

Еще не дожидаясь принятия стандарта, 802.3z некоторые компании выпустили первое оборудование Gigabit Ethernet на оптоволоконном кабеле уже к лету 1997 года.

Как и при разработке стандарта Fast Ethernet, перед разработчиками стандарта Gigabit Ethernet была поставлена задача максимально сохранить простоту идей классической технологии Ethernet, но при этом достигнуть битовой скорости в 1000 Мбит/с.И нужно сразу отметить, что здесь пришлось принимать более кардинальные меры, чем просто изменение физической среды, как было у 100-мегабитного стандарта Fast Ethernet.

Такой огромный запас пропускной способности сети, предполагал большие перспективы по сокращению проблем, которые были сильно выражены в сетях Ethernet.

Разработчики технологии решили, что нижний уровень просто должен быстро передавать данные, а более сложные и более редко встречающиеся задачи (например, приоритезация трафика) должны передаваться верхним уровням.

Технология Gigabit Ethernet имеет много общего с технологиями Ethernet и Fast Ethernet:

- сохраняются все форматы кадров Ethernet.

- сохраняется метод доступа CSMA/CD.

- поддерживаются все основные виды кабелей, используемых в Ethernet и Fast Ethernet: волоконно-оптический, витая пара категории 5, а также коаксиальный.

Однако разработчики технологии Gigabit Ethernet внесли изменения не только в физический уровень, как это было в случае Fast Ethernet, но и в MAC уровень.

Перед разработчиками стандарта Gigabit Ethernet стояло несколько трудно разрешимых проблем:

1. Задача обеспечения нормального диаметра сети. Для выполнения критерия надежного распознавания коллизий в сетях Gigabit Ethernet с пропускной способностью 1000 Мб/с, а, следовательно битовым интервалом 100 нс, необходимое ограничение на длину кабеля, для разделяемой среды составит всего 25 м при сохранении размера кадров и всех параметров метода CSMA/CD неизменными. Необходимым же диаметром сети считается 200 м.

2. Задача достижения битовой скорости 1000 Мбит/с на основных типах кабелей. Даже для оптоволоконного кабеля достижение такой скорости представляет некоторые проблемы, т. к. технология Fibre Channel, физический уровень которой был взят за основу для оптоволоконной версии Gigabit Ethernet, обеспечивает скорость передачи данных всего в 800 Мбит/с. Битовая скорость этой технологии на линии хоть и равна примерно 1000 Мбит/с, но при методе кодирования 8В/10В, который она использует, полезная битовая скорость на 25 % меньше скорости импульсов на линии.

3. Задача поддержки кабеля на витой паре. Эта задача на первый взгляд кажется неразрешимой - ведь даже для 100-мегабитных протоколов пришлось использовать достаточно сложные методы кодирования, чтобы уложить спектр сигнала в полосу пропускания кабеля. Для решения именно этой задачи был создан отдельный комитет 802.3ab, который занимается разработкой стандарта Gigabit Ethernet на витой паре категории 5.

Рассмотрим, какие изменения в технологии Gigabit Ethernet претерпел MAC уровень Ethernet.

Для расширения максимального диаметра сети до 200 м был увеличен минимальный размер кадра (без учета преамбулы) с 64 до 512 байт или до 4096 bt. Соответственно, время двойного оборота теперь также можно было увеличить до 4095 bt, что делает допустимым диаметр сети около 200 м при использовании одного повторителя.

Давайте попытаемся рассчитать для оптоволоконной конфигурации сети необходимое значение PDV. Итак, при двойной задержке сигнала в 10bt/м оптоволоконные кабели длиной 100 м вносят вклад во время двойного оборота по 1000 bt (это справочные данные). Если повторитель и сетевые адаптеры будут вносить такие же задержки, как в технологии Fast Ethernet (данные для которых приводятся в лабораторных работах), то задержка повторителя в 1000 bt и пары сетевых адаптеров в 1000 bt дадут в сумме время двойного оборота 4000 bt, что меньше 4096 bt.

Для увеличения длины кадра до требуемой в новой технологии величины сетевой адаптер должен дополнить поле данных до длины 448 байт так называемым расширением (extention). Как мы уже отмечали, оптоволоконный Gigabit Ethernet использует метод кодирования 8В/10В. Поэтому расширение поля данных, осуществили за счет заполнения его запрещенными символами кода 8В/10В, которые невозможно принять за коды данных. Для сокращения накладных расходов при использовании слишком длинных кадров для передачи коротких квитанций разработчики стандарта разрешили конечным узлам передавать несколько кадров подряд, без передачи среды другим станциям.

Такой режим получил название Burst Mode - монопольный пакетный режим.

Станция может передать подряд несколько кадров с общей длиной не более 65 536 бит или 8192 байт. Если станции нужно передать несколько небольших кадров, то она может не дополнять их до размера в 512 байт, а передавать подряд до исчерпания предела в 8192 байт (в этот предел входят все байты кадра, в том числе преамбула, заголовок, данные и контрольная сумма). Предел 8192 байт называется BurstLength. Если станция начала передавать кадр, и предел BurstLength был достигнут в середине кадра, то кадр разрешается передать до конца.

Увеличение "совмещенного" кадра до 8192 байт несколько задерживает доступ к разделяемой среде других станций, но при скорости 1000 Мбит/с эта задержка не столь существенна.

В стандарте 802.3z определены следующие типы физической среды:


Поделиться:

Дата добавления: 2015-01-01; просмотров: 153; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты