КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Случайные величины.12.2.1. Случайная величина Х равна числу появлений «герба» в серии из n+3 бросаний монеты. Найти закон распределения и функцию распределения F(x) этой случайной величины; вычислить ее математическое ожидание MXи дисперсию DX; построить график F(x). 12.2.2. Закон распределения дискретной случайной величины X имеет вид:
Найти вероятности p4, p5, и дисперсию DX, если математическое ожидание MX=-0,5+0,5m+0,1n. 12.2.3. Плотность распределения непрерывной случайной величины X имеет вид: Найти: а) параметр а; б) функцию распределения ; в) вероятность попадания случайной величины X в интервал ; г) математическое ожидание MX и дисперсию DX. Построить график функций и . 12.2.4. Случайные величины имеют равномерное, пуассоновское и показательное распределения соответственно. Известно, что математические ожидания Mξi=m+n, а дисперсия Dξ1=n2/3. Найти вероятности: а) ; б) ; в) .
|