Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Дифференциальное исчисление.




 

Пределы, непрерывность и разрывы функций.

3.1.1.Найти пределы функций:

а) ;

б) ;

в) ;

г) .

3.1.2.В точках и для функции установить непрерывность или определить характер точек разрыва. Нарисовать график функции в окрестностях этих точек:

;

Производные функций.

3.1.3.Найти производные функций:

а) ; б) ;

в) ; д) ; е) ;

ж)


 

Приложения производной.

3.2.1.С помощью методов дифференциального исчисления построить график функции .

Приближенное решение алгебраических уравнений.

3.3.1.Для уравнения отделить положительный корень и найти его приближенно с точностью :

а) методом деления отрезка пополам;

б) методом касательных.

Примечание. Можно считать, что точность достигнута, если разность между соседними приближениями и удовлетворяет неравенству .

 

Интегральное исчисление.

 


Поделиться:

Дата добавления: 2015-01-05; просмотров: 136; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты