Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Вопрос 3. Какое из высказываний непосредственно следует из аксиом принадлежности?




1. Пусть прямая а не проходит через точки А, В и С. Тогда если прямая а пересекает отрезок АВ, то она пересекает еще один и только один из отрезков ВС или АС

2. Если луч с началом в вершине угла проходит через внутреннюю точку угла, то все его точки, кроме начала, лежат внутри угла

3. Для любых двух точек А и В существует такая точка С, что точка В лежит между А и С

4. Две прямые имеют не более одной общей точки

5. Из трех точек, лежащих на одной прямой, одна и только одна лежит между двумя другими

 

Вопрос 4. Найдите ошибку в определении интерпретации элементов модели Пуанкаре планиметрии Лобачевского.

1. Верхняя полуплоскость - это открытая полуплоскость, ограниченная горизонтальной прямой х

2. Абсолют - прямая х, граница верхней полуплоскости

3. Точки абсолюта - точки плоскости Лобачевского

4. Открытые полуокружности верхней полуплоскости с концами на абсолюте - неевклидовые прямые

5. Лучи полуплоскости с началом на абсолюте и перпендикулярные ему - также неевклидовые прямые

 

Вопрос 5. Найдите ошибку в описании элементов арифметической модели системы аксиом евклидовой планиметрии.

1. Любая упорядоченная пара целых чисел - “точка”, а число х, у - координаты “точки”

2. Уравнение , где , - “прямая”

3. Ось ординат - “прямая” х = 0

4. Ось абсцисс - “прямая” у = 0

5. Начало координат - “точка” (0, 0)


Поделиться:

Дата добавления: 2015-01-05; просмотров: 135; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты