Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Строение и свойства фуллеренов (С60, С20)




 

Фуллере́н, бакибо́л или букибо́л — молекулярное соединение, принадлежащее классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомовуглерода. Своим названием фуллерены обязаны инженеру и архитектору Ричарду Бакминстеру Фуллеру, чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из n вершин, образующих только пяти- и шестиугольные грани, согласно теореме Эйлера для многогранников, утверждающей справедливость равенства (где и соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и шестиугольных граней. Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными, если снаружи — экзоэдральными

В молекулах фуллеренов атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов — [60]фуллерен (C60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч. Так как каждый атом углерода фуллерена С60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа13С — он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1.39 Å, а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1.44 Å[16]. Кроме того, связь первого типа двойная, а второго — одинарная, что существенно для химии фуллерена С60.

Ученые США и Германии выделили наименьший из фуллеренов* - молекулу С20. Самая известная молекула из фуллеренов - С60. Входящие в ее состав 60 атмов углерода расположены в высотах усеченного икосаэдра. Эта фигура, состоящая из 12 пятиугольников и 20 шестиугольников, напоминает футбольный мяч. Среди граней молекулы С20 нет шестиугольников, только 12 пятиугольников.

В течение некоторого времени получение молекулы С20 считалось теоретически возможным - эксперт SEED Бернд Эгген спрогнозировал это открытие еще 10 лет назад - но это было трудно осуществить. Одна из причин этого в том, что из-за меньшего размера молекулы по сравнению с другими фуллеренами она более искривлена и обладает тенденцией к пружинному раскрытию. Она очень легко вступает в связь с другими элементами, образуя другие молекулы.

Получение молекулы С20 удалось после того, как была получена двадцатигранная молекула C20H20 - устойчивый углеводород, состоящий из 20 атомов углерода и 20 атомов водорода. В ходе двухступенчатого процесса атомы водорода были замещены атомами брома, которые обладают меньшей связывающей способностью с атомами углерода. Затем бром был удален и получилась молекула С20.

Полученные молекулы С20 были довольно нестабильны, но их мимолетное присутствие было зарегистрировано спектроскопией.

К тому же этому крошечному футбольному мячу исследователи создали две другие формы С20, то есть изомеры этой молекулы, одна из них - в форме кольца, а другая - в форме чаши.

 
Самый известный фуллерен, молекула С60 Молекула в форме додекаэдра Изомер молекулы С20 в форме чаши Изомер молекулы С20 в форме кольца.

Фуллерен в качестве материала для полупроводниковой техники[править | править вики-текст]

Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента[31].

Фуллерен как фоторезист[править | править вики-текст]

Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями. В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) притравлении кремния электронным пучком с использованием маски из полимеризованной плёнки С60[22].

См. также: Технологический процесс в электронной промышленности

Фуллереновые добавки для роста алмазных плёнок методом CVD[править | править вики-текст]

Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С2, которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0.6 мкм/час, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы — использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения[22].

Сверхпроводящие соединения с С60[править | править вики-текст]

Молекулярные кристаллы фуллеренов — полупроводники, однако в начале 1991 года было установлено, что легирование твёрдого С60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник. Легирование С60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X3С60 (Х — атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К3С60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х3С60, либо XY2С60 (X,Y — атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs2С60 — его Ткр=33 К[32].

Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ[править | править вики-текст]

Следует отметить, что присутствие фуллерена С60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полимерной пленки толщиной — 100 нм. Образованная пленка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400—500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

Другие области применения[править | править вики-текст]

Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на ≈30 %.

Фуллерены могут быть также использованы в фармакологии для создания новых лекарств. Так, в 2007 году были проведены исследования, показавшие, что эти вещества могут оказаться перспективными для разработки противоаллергических средств[33][34].

Различные производные фуллеренов показали себя эффективными средствами в лечении вируса иммунодефицита человека: белок, ответственный за проникновение вируса в кровяные клетки — ВИЧ-1-протеаза, — имеет сферическую полость диаметром 10 Ǻ, форма которой остается постоянной при всех мутациях. Такой размер почти совпадает с диаметром молекулы фуллерена. Синтезировано производное фуллерена, которое растворимо в воде. Оно блокирует активный центр ВИЧ-протеазы, без которой невозможно образование новой вирусной частицы[35].

Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций.

Также фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

Химические свойства[править | править вики-текст]

Фуллерены, несмотря на отсутствие атомов водорода, которые могут быть замещены как в случае обычных ароматических соединений, всё же могут быть функционализированы различными химическими методами. Например, успешно были применены такие реакции для функционализации фуллеренов, как реакция Дильса — Альдера, реакция Прато, реакция Бингеля. Фуллерены также могут быть прогидрированы с образованием продуктов от С60Н2 до С60Н50.

 


Поделиться:

Дата добавления: 2015-01-15; просмотров: 521; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты