Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Типы скелетных мышечных волокон и их морфофункциональная характеристика




Рассматривая макроструктуру скелетных мышц, были выделены три основных элемента: это фасции, мышечные волокна и сухожилия. В этом параграфе мы более подробно рассмотрим типы мышечных волокон, так как от этого во многом зависит способность мышц к проявлению силы, скорости, а также выносливости.

Вначале были выделены два типа скелетных мышечных волокон, каждый из которых имел свои физиологические особенности. Это – медленные (тонические) и быстрые (фазические) волокна. В некоторых мышцах могут быть только быстрые или только медленные волокна, в других – волокна обоих типов в определенном соотношении. В дальнейшем были выделены мышечные волокна промежуточного типа.

Благодаря различным типам волокон организм способен передвигаться и поддерживать позу. Быстрые волокна позволяют мышце сокращаться с высокой скоростью. В большом количестве эти волокна имеются у хищников; они обеспечивают быстроту реакции при ловле добычи. С другой стороны, потенциальная добыча, чтобы не стать жертвой хищников, тоже должна быть способна к быстрому реагированию. В обоих случаях от подвижности животного будут зависеть его шансы на выживание. Когда животное находится в покое, оно поддерживает определенную позу с помощью тонических мышечных волокон. Им свойственно более медленное и длительное сокращение и в то же время энергетические затраты меньше, чем при сокращении быстрых волокон. Сокращение их по своей природе обычно изометрическое, при котором мышцы, противодействуя силе тяжести и удерживая конечности в определенном положении, сохраняют постоянную длину.

У человека все мышцы тела состоят из волокон трех типов, но обычно один из них доминирует. Это имеет физиологическое значение, поскольку тонические мышцы способны к медленному и длительному сокращению и поэтому медленных волокон больше в позных мышцах-разгибателях, тогда как в сгибателях, предназначенных для быстрых реакций, преобладают быстрые фазические волокна.

Согласно современным представлениям, большинство скелетных мышц человека и животных представляют собой гетерогенные морфофункциональные системы, состоящие из мышечных волокон, отличающихся по структуре, метаболизму и функции.

Мышечные волокнаIтипа в мировой номенклатуре обозначают как красные, окислительные, медленные, устойчивые к утомлению. В мышечных волокнах I типа хорошо выражен Z-диск, который толще, чем в мышечных волокнах других типов, саркоплазмаческий ретикулум развит в меньшей степени, чем в других типах мышечных волокон. В данных структурах выявляется много митохондрий с поперечной ориентацией. В саркоплазме обнаруживаются липидные капли, которые часто контактируют с митохондриями. Мышечные волокна I типа характеризуются также высокой степенью кровообращения. Каждое мышечное волокно I типа контактирует с 5-6 кровеносными капиллярами. В этих волокнах отмечается самое высокое содержание миоглобина. Согласно данным гистохимических исследований, в волокнах I типа обнаруживается более низкая активность креатинфосфокиназы, чем в других мышечных волокнах.

Мышечные волокнаIIВ типа в мировой номенклатуре обозначают как белые, быстрые, гликолитические, быстроутомляемые. Z-диск в мышечных волокнах IIВ типа более тонкий, чем в волокнах других типов. В данных структурах очень хорошо развит саркоплазматический ретикулум, системы терминальных цистерн и триад. В саркоплазме мышечных волокон IIB типа сравнительно немного малых по размерам митохондрий, содержащих небольшое число крист. Мышечные волокна IIВ типа контактируют с меньшим количеством капилляров, чем мышечные волокна других типов. Кроме того, в этих волокнах имеется очень мало миоглобина. Именно этим объясняется их более светлая окраска, благодаря чему они и получили название «белых». В мышечных волокнах IIB типа содержание креатинфосфата выше, чем в других типах мышечных волокон.

Мышечные волокнаIIA типа в мировой номенклатуре обозначают как промежуточные, окислительно-гликолитические, быстрые, устойчивые к утомлению. Z-диск в мышечных волокна IIA типа, по мнению ряда авторов, толще, чем в мышечных волокнах IIВ типа и не отличается от такового в волокнах I типа. По данному показателю волокна типа IIA занимают промежуточное положение между мышечными волокнами I типа и мышечными волокнами IIB типа. В мышечных волокнах IIA типа хорошо развит саркоплазматический ретикулум и системы триад. Мышечные волокна IIА типа богаче митохондриями, чем волокна IIВ типа и практически не отличаются по этому признаку от мышечных волокон I типа. Митохондрии в мышечных волокнах I типа имеют преимущественно продольную ориентацию (по длине оси мышечных волокон). Они часто образуют скопления под сарколеммой. В саркоплазме мышечных волокон IIA типа встречается достаточно большое количество липидных капель. Мышечные волокна IIА типа содержат больше миоглобина, чем мышечные структуры IIВ типа. Содержание креатинфосфата в мышечных волокнах IIА типа ниже, чем в волокнах IIВ типа и не отличается от такового в волокнах I типа. Мышечные волокна данного типа представляются универсальными в плане их метаболизма. В связи с тем, что мышечные волокна IIА типа способны длительное время производить работу достаточно большой мощности, они должны рассматриваться как универсальные мышечные волокна в плане их функциональных возможностей.

 


8. Механизм образования мочи: клубочковая фильтрация, канальцевая реабсорбция и секреция. Значение петли Генле в образовании конечной мочи.

 

Клубочковая фильтрация. Начальным этапом образвания мочи является фильтрация: в почечном тельце из капиллярного клубочка в полость капсулы фильтруется жидкая часть крови. Клубочковая фильтрация – это пассивный процесс. В условиях покоя у взрослого человека около 1/4 крови, выбрасываемой в аорту левым желудочком сердца, поступает в почечные артерии. Иными словами, через обе почки у взрослого мужчины проходит около 1300 мл крови в минуту, у женщин несколько меньше. Общая фильтрационная поверхность клубочков почек составляет примерно 1,5 м2. В клубочках из кровеносных капилляров в просвет капсулы почечного клубочка происходит ультрафильтрация плазмы крови, в результате чего образуется первичная моча, в которой практически отсутствует белок. В норме белки как коллоидныевещества не проходят через стенку капилляров в полость капсулы почечного клубочка. При ряде патологических состояний проницаемость мембраны почечного фильтра повышается, что ведет к изменению состава ультрафильтрата. Повышение проницаемости является главной причиной протеинурии, прежде всего альбуминурии. В норме объемная скорость фильтрации в среднем составляет 125 мл/мин, что в 100 раз превышает продукцию конечной мочи. Скорость фильтрации обеспечивается фильтрационным давлением, которое можно выразить следующей формулой:

ФД = КД – (ОД + КапсД),

где ФД – фильтрационное давление; КД – капиллярное давление; ОД – онко-тическое давление; КапсД – внутрикапсулярное давление. Следовательно, для обеспечения процесса фильтрации необходимо, чтобы гидростатическое давление крови в капиллярах превышало сумму онкотического и внутрикап-сулярного. В норме эта величина составляет около 40 гПа (30 мм рт. ст.). Вещества, усиливающие кровообращение в почках или увеличивающие количество функционирующих клубочков (например, теобромин, теофил-лин, плоды можжевельника, листья толокнянки и др.), обладают мочегонными свойствами.

Рис. 18.1.Строение юкстамедуллярного (а) и коркового (б) нефронов. I - корковое вещество; II - мозговое вещество; А - наружная зона мозгового вещества; Б - внутренняя зона мозгового вещества; 1 - сосудистый клубочек; 2 - капсула почечного клубочка; 3 - проксимальный каналец (извитая часть); 4 - проксимальный каналец (прямая часть); 5 - нисходящее тонкое колено петли нефрона; 6 - восходящее тонкое колено петли нефрона; 7 - восходящее толстое колено петли нефрона; 8 - дистальный извитой каналец; 9 - связующий каналец; 10 - собирательная трубка; 11 - собирательная почечная трубочка.

Капиллярное давление в почках зависит не столько от артериального давления, сколько от соотношения просвета «приносящей» и «выносящей» артериол клубочка. «Выносящая» артериола примерно на 30% меньше в диаметре, чем «приносящая», регуляция их просвета осуществляется прежде всего кининовой системой. Сужение «выносящей» артериолы увеличивает фильтрацию. Напротив, сужение «приносящей» артериолы снижает фильтрацию.

По величине клубочковой фильтрации судят о фильтрационной способности почек. Если в кровяное русло ввестивещество, которое фильтруется в клубочках, но не реабсорбируется и не секретируется канальцами нефро-нов, то его клиренс численно равен объемной скорости клубочковой фильтрации. Клиренс (очищение) любого соединения принято выражать количеством миллилитров плазмы, которое в 1 мин полностью освобождается от определенноговещества при прохождении ее через почки. Веществами, по которым чаще определяют клубочковую фильтрацию, являются инулин и маннитол. Для расчета клиренса (например, инулина) необходимо величину минутного диуреза умножить на Kм/Kкp(отношение концентраций данного вещества в моче и плазме крови):

где С – клиренс; Км – концентрация данного соединения в моче; Ккр – концентрация в плазме крови; V – количествомочи в 1 мин, мл. Например, при расчете клиренса инулина в норме получим величину клубочковой фильтрации, равную 100–125 мл за 1 мин.

Реабсорбция и секреция. Суточное количество ультрафильтрата в 3 раза превышает общее количество жидкости, содержащейся в организме. Естест-

венно, что первичная моча во время движения по почечным канальцам отдает большую часть своих составных частей, особенно воду, обратно в кровь. Лишь 1 % жидкости, профильтрованной клубочками, превращается в мочу.

В канальцах реабсорбируется 99% воды, натрия, хлора, гидрокарбоната, аминокислот, 93% калия, 45% мочевины и т.д. Из первичной мочи в результате реабсорбции образуется вторичная, или окончательная, моча, которая затем поступает в почечные чашки, лоханку и по мочеточникам попадает в мочевой пузырь.

Функциональное значение отдельных почечных канальцев в процессе мочеобразования неодинаково. Клеткипроксимального сегмента нефрона реабсорбируют попавшие в фильтрат глюкозу, аминокислоты, витамины,электролиты; 6/7 жидкости, составляющей первичную мочу, подвергается реабсорбции также в проксимальных канальцах. Вода первичной мочи частично (парциально) реабсорбируется в дистальных канальцах. В этих же канальцах происходит дополнительная реабсорбция натрия, могут секрети-роваться в просвет нефрона ионы калия,аммония, водорода и др.

В настоящее время в значительной степени изучены молекулярные механизмы реабсорбции и секреции веществклетками почечных канальцев. Так, установлено, что при реабсорбции натрий пассивно поступает из просвета канальца внутрь клетки, движется по ней к области базальной плазматической мембраны и с помощью «натриевогонасоса» поступает во внеклеточную жидкость. До 80% энергии АТФ в клетках канальцев почек расходуется на «натриевый насос». Всасывание воды в проксимальном сегменте происходит пассивно в результате активного всасывания натрия. Вода в этом случае «следует» за натрием. Кстати, в дистальном сегменте всасывание водыпроисходит вне всякой зависимости от всасывания ионов натрия; этот процесс регулируется антидиуретическим гормоном.

Калий в отличие от натрия может не только реабсорбироваться, но и секретироваться. При секреции калий из межклеточной жидкости поступает через базальную плазматическую мембрану в клетку канальца за счет работы «натрий-калиевого насоса», а затем выделяется в просвет нефрона через апикальную клеточную мембранупассивно. Секреция, как и реабсорб-ция, является активным процессом, связанным с функцией клеток канальцев. Механизмы секреции те же, что и механизмы реабсорбции, но только все процессы протекают в обратном направлении – от крови к канальцу.

Вещества, которые не только фильтруются через клубочки, но и реабсор-бируются или секретируются в канальцах, имеют клиренс, который показывает целостную работу почек (смешанный клиренс). В зависимости от того, комбинируется ли фильтрация с реабсорбцией или с секрецией, выделяют два вида смешанного клиренса: фильтрационно-реабсорбционный и фильт-рационно-секреционный. Величина смешанного фильтрационно-реабсорб-ционного клиренса меньше величины клубочкового клиренса, так как часть вещества реабсорбируется из первичной мочи в канальцах. Значение этого показателя тем меньше, чем эффективнее реабсорбция в канальцах. Так, для глюкозы в норме он равен 0. Максимальное всасывание глюкозы в канальцах составляет 350 мг/мин. Максимальную способность канальцев к обратному всасыванию принято обозначать Тм (транспорт максимум). Иногда встречаются пациенты с заболеванием почек, которые, несмотря на высокое содержание глюкозы в плазме крови, не выделяют глюкозу с мочой, так как фильтруемое количество глюкозы ниже значения Тм. Наоборот, при врожденном заболевании почечная глюкозурия может быть основана на снижении значения Тм.

Рис. 18.2.Регуляция реабсорбции в почке (схема по А.П. Зильберу). Объяснение в тексте.

Для мочевины величина смешанного фильтрационно-реабсорбционного клиренса составляет 70. Это значит, что из каждых 125 мл ультрафильтрата или плазмы крови за минуту от мочевины полностью освобождаются 70 мл. Иными словами, определенное количество мочевины, а именно то, которое содержится в 55 мл ультрафильтрата илиплазмы, всасывается обратно.

Величина смешанного фильтрационно-секреционного клиренса может быть больше клубочкового клиренса, так как к первичной моче прибавляется дополнительное количество вещества, которое секретируется в канальцах. Этот клиренс тем больше, чем сильнее секреция канальцев. Клиренс некоторых веществ, секретируемых канальцами (например, диодраст, пара-аминогиппуровая кислота), настолько высок, что практически приближается к величине почечного кровотока (количество крови, которое за минуту проходит через почки). Таким образом, по клиренсу этихвеществ можно определить величину кровотока.

Реабсорбция и секреция различных веществ регулируются ЦНС и гормональными факторами. Например, при сильных болевых раздражениях или отрицательных эмоциях может возникнуть анурия (прекращение процесса мочеобразования). Всасывание воды возрастает под влиянием антидиуретического гормона вазопрессина. Альдостерон увеличивает реабсорбцию натрия в канальцах, а вместе с ним и воды. Всасывание кальция и фосфатаизменяется под влиянием паратиреоидного гормона. Паратгормон стимулирует секрецию фосфата, а витамин D задерживает ее.

Регуляция реабсорбции натрия и воды в почке представлена на рис. 18.2. При недостаточном поступлении крови к почечным клубочкам, сопровождающемся небольшим растяжением стенок артериол (снижение давления), происходит возбуждение заложенных в стенках артериол клеток юкстагло-мерулярного аппарата (ЮГА). Они начинают усиленно секретировать протеолитический фермент ренин, катализирующий начальный этап образования ангиотензина. Субстратом ферментативного действия ренина является ангиотензиноген (гликопротеин), относящийся к α2-глобулинам и содержащийся в плазме крови и лимфе.

Ренин разрывает в молекуле ангиотензиногена пептидную связь, образованную двумя остатками лейцина, в результате чего освобождается дека-пептид ангиотензин I, биологическая активность которого незначительна в среде, близкой к нейтральной.

Считают, что под влиянием специальной пептидазы, обнаруженной в плазме крови и тканях,– ангиотензин I превращающего фермента (дипеп-тидил-карбоксипептидаза I) из ангиотензина I образуется октапептид ан-гиотензин II. Главным местом этого превращения являются легкие.

 

Петля Генле состоит из нисходящей и восходящей частей. Тонкий сегмент нисходящей части является продолжением проксимального канальца и опускается из коркового вещества почки в мозговое. В мозговом веществе тонкий сегмент загибается, делая U-образный разворот, и поднимается в корковое вещество уже как восходящая часть петли Генле. В восходящей части выделяют различающиеся в функциональном отношении тонкий сегмент, толстый медуллярный сегмент и толстый кортикальный сегмент (рис. 31-1). У нефронов, клубочки которых расположенные вблизи мозго-

 

Рис. 31-2. Реабсорбция натрия в нефроне. Указанное количество реабсорбированного натрия в каждом отделе нефро-на соответствует проценту от профильтровавшейся натриевой нагрузки.

вого вещества (юкстамедуллярные нефроны), петля Генле более длинная, чем у нефронов, клубочки которых лежат ближе к наружной поверхности почки (корковые нефроны). У корковых нефронов с короткой петлей отсутствует тонкий сегмент восходящей части. Корковых нефронов в 7 раз больше, чем юкстамедуллярных. Петля Генле поддерживает гипертоничность интерстициальной жидкости мозгового вещества, а также опосредованно обеспечивает процесс концентрирования мочи в собирательных трубочках.

В норме до 25-35 % фильтрата, образующегося в капсуле Боумена, достигает петли Генле. В ней реабсорбируется 15-20% фильтруемого натрия. За исключением толстого сегмента восходящей части, реабсорбция растворенных веществ и воды в петле Генле происходит пассивно — по градиенту концентрации и осмотическому градиенту соответственно. В толстом сегменте восходящей части Na" и СГ реабсорбируются в большей степени, чем вода; более того, в этой части нефрона реабсорбция Na" непосредственно сопряжена с реабсорбцией K+ и СГ (рис. 31-4), и концентрация СГ в канальцевой жидкости является фактором, ограничивающим

скорость реабсорбции. Активная реабсорбция Na+ осуществляется Ка"УК+-зависимой АТФ-азой капиллярной поверхности эпителиальных клеток.
В отличие от нисходящей части и тонкого сегмента восходящей части петли Генле, толстый сегмент восходящей части непроницаем для воды. Поэтому оттекающая из петли Генле канальцевая жидкость гипотонична (100-200 мОсм/л), а окружающая петлю Генле интерстициальная жидкость гипертонична. Механизм противоточного умножения работает таким образом, что гипертонич-ностъ каналъцевой жидкости и окружающего UH-терстиция значительно нарастает по мере углубления в мозговое вещество почки (рис. 31-5). Концентрация мочевины в мозговом веществе становится высокой, что существенно влияет на его гипертоничность. Структуры механизма противоточного умножения включают петлю Генле, кортикальные и медуллярные собирательные трубочки и сопровождающие их капилляры (vasa recta),

Толстый сегмент восходящей части петли Генле играет важную роль в реабсорбции Ca2+ и Mg2+.


9. Механизм мышечного сокращения. Роль саркоплазматического ретикулума в процессах сокращения и расслабления мышечного волокна.

 

Мы́шечное сокраще́ние — реакция мышечных клеток на воздействие нейромедиатора, реже гормона, проявляющаяся в уменьшении длины клетки. Это жизненно важная функция организма, связанная с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами.

Все виды произвольных движений — ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счёт скелетных мышц. Непроизвольные движения (кроме сокращения сердца) — перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря — обусловлены сокращением гладкой мускулатуры. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Основой всех типов мышечного сокращения служит взаимодействие актина и миозина. В скелетных мышцах за сокращение отвечаютмиофибриллы (примерно две трети сухого веса мышц). Миофибриллы — структуры толщиной 1 — 2 мкм, состоящие из саркомеров — структур длиной около 2,5 мкм, состоящих из актиновых и миозиновых (тонких и толстых) филаментов и Z-дисков, соединённых с актиновыми филаментами. Сокращение происходит при увеличении концентрации в цитоплазме ионов Ca2+ в результате скольжения миозиновых филаментов относительно актиновых. Источником энергии сокращения служит АТФ. КПД мышечной клетки около 50 %, мышцы в целом не более 20%. Максимальная сила мышц не достигается в реальных условиях; не все клетки мышцы используются одновременно и сокращаются с максимальной силой, иначе при сокращении многих скелетных мышц будут повреждены сухожилия или кости (что иногда и наблюдается при сильных судорогах). КПД мышцы также зависит от внешних условий; например, на холоде он значительно снижается, так как для организма важнее сохранить температуру тела.


Поделиться:

Дата добавления: 2015-01-15; просмотров: 116; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты