Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Прогнозирование изменений экономических показателей.




Формальный нейрон - в нейронных сетях - процессорный элемент, преобразователь данных, получающий входные данные и преобр-й их в соответс. с заданной функцией и параметрами. Форм. нейрон работает с дискретным временем.

Схема искусственного нейрона

1.Нейроны, выходные сигналы которых поступают на вход данному
2.Сумматор входных сигналов
3.Вычислитель передаточной функции
4.Нейроны, на входы которых подаётся выходной сигнал данного
5. веса входных сигналов

 

Математически нейрон предст. собой взвешенный сумматор, единств.выход которого опр-ся через его входы и матрицу весов следующим образом:

, где

Здесь и — соответственно сигналы на входах нейрона и веса входов, функция u называется индуцированным локальным полем, а f(u) — передаточной функцией. Возможные значения сигналов на входах нейрона считают заданными в интервале . Они могут быть либо дискретными (0 или 1), либо аналоговыми. Дополнительный вход и соответствующий ему вес используются для инициализации нейрона. Под инициализацией подразумевается смещение активационной функции нейрона по горизонтальной оси, то есть формирование порога чувствительности нейрона. Кроме того, иногда к выходу нейрона специально добавляют некую случайную величину, называемую сдвигом. Сдвиг можно рассматривать как сигнал на дополнительном, всегда нагруженном, синапсе.

  1. Активационная функция нейрона. Виды функций.

Активационная функция нейрона определяет нелинейное преобразование, осуществляемое нейроном.

Существует множество видов активационных функций, но более всего распространены следующие четыре:

1. Пороговая функция. На рис. 7.2, а приведен ее график.

. (7.5)

Первая из введенных активационных функций, она была описана в ра­боте Мак-Каллока и Питтса. В честь этого модель нейрона с пороговой акти­ва­ционной функцией называется моделью Мак-Каллока-Питтса.

2. Кусочно-линейная функция. Она изображена на рис. 7.2, б и опи­сы­ва­ется следующей зависимостью:

. (7.6)

В данном случае a=1, и коэффициент наклона линейного участ­ка выбран еди­ничным, а вся функция может интерпретироваться как аппроксимация нели­ней­ного усилителя. При бесконечно большом ко­эф­фициенте наклона линейного участка функция вырождается в пороговую.

В большинстве типов искусственных нейронных сетей ис­поль­зуются ней­ро­ны с линейной активационной функцией , пред­ставляющей собой част­­ный случай (7.6) с неограниченным ли­ней­ным участком.

Рис. 7.2. Типы активационных функций
а), г) пороговая; б) линейная; в) сигмоидальная;
д) тангенциальная; е) радиально-базисная активационные функции

  1. Понятие искусственной нейронной сети.

Иску́сственная нейро́нная се́ть (ИНС) — математическая модель, а также её программная или аппаратная реализация, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма[2]. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных.

Схема простой нейросети. Зел. цветом обозн. входные нейроны, гол.— скрытые нейроны, жёлтым — выходной нейрон.

  1. Основные характеристики нейронных сетей.

Некоторые свойства нейронных сетей.

1. Обучение

Искусственные нейронные сети могут менять свое поведение в зависимости от внешней среды. Этот фактор в большей степени, чем любой другой, ответствен за тот интерес, который они вызывают. После предъявления входных сигналов (возможно, вместе с требуемыми выходами) они самонастраиваются, чтобы обеспечивать требуемую реакцию. Было разработано множество обучающих алгоритмов, каждый со своими сильными и слабыми сторонами. Все еще существуют проблемы относительно того, чему сеть может обучиться и как обучение должно проводиться.

2. Обобщение

Отклик сети после обучения может быть до некоторой степени нечувствителен к небольшим изменениям входных сигналов. Эта внутренне присущая способность видеть образ сквозь шум и искажения жизненно важна для распознавания образов в реальном мире. Она позволяет преодолеть требование строгой точности, предъявляемое обычным компьютером, и открывает путь к системе, которая может иметь дело с тем несовершенным миром, в котором мы живем. Важно отметить, что искусственная нейронная сеть делает обобщения автоматически благодаря своей структуре, а не с помощью использования «человеческого интеллекта» в форме специально написанных компьютерных программ.

3. Абстрагирование

Некоторые из искусственных нейронных сетей обладают способностью извлекать сущность из входных сигналов. Например, сеть может быть обучена на последовательности искаженных версий буквы «А». После соответствующего обучения предъявление такого искаженного примера приведет к тому, что сеть породит букву совершенной формы (в данном случае букву «А»). В некотором смысле она научится порождать то, что никогда не видела. Способность извлекать идеальные прототипы является у людей весьма ценным качеством.

4. Применимость

Искусственные нейронные сети не являются панацеей. Они, очевидно, не годятся для выполнения таких задач, как начисление заработной платы, однако они незаменимы в большом классе других задач, с которыми плохо или вообще не справляются обычные вычислительные системы.

  1. Задачи, решаемые нейронными сетями.

НС хорошо подходят для распознавания образов и решения задач классификации, оптимизации и прогнозирования. Ниже приведен перечень возможных промышленных применений нейронных сетей, на базе которых либо уже созданы коммерческие продукты, либо реализованы демонстрационные прототипы.

Банки и страховые компании:

· автоматическое считывание чеков и финансовых документов;

· проверка достоверности подписей;

· оценка риска для займов;

прогнозирование изменений экономических показателей.

Административное обслуживание:

· автоматическое считывание документов;


Поделиться:

Дата добавления: 2015-01-19; просмотров: 161; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты