Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Уравнения МДС и токов асинхронного двигателя

Читайте также:
  1. U–образные и рабочие характеристики синхронного двигателя
  2. Автоматизація потокових ліній приготування кормів.
  3. Анализ денежных средств и потоков денежных средств на предприятии
  4. Б) проводится анализ движения денежных средств на проект в том случае, когда денежные потоки проекта можно отделить от денежных потоков заемщика
  5. Билет 8.Магнитное поле. Взаимодействие токов.
  6. Блокировка токовых направленных защит. Расчет уставок направленных токовых защит. Ток срабатывания, выдержка времени, мертвая зона токовой направленной защиты.
  7. Будем искать частное решение уравнения
  8. В) Система управления электроприводами с несколькими обратными связями, поддерживающими постоянство скорости двигателя.
  9. Взаимодействие ионизирующих излучений и потоков частиц
  10. Взаимодействие токов. Закон Б-С-Л) – 15 заданий

 

Основной магнитный поток Ф в асинхронном двигателе создается совместным действием МДС обмоток статора F1 и ротора F2:

= ( 1 + 2) / Rм = 0 / Rм (12.10)

где Rм — магнитное сопротивление магнитной цепи двигателя по­току Ф; F0 — результирующая МДС двигателя, численно равная МДС обмотки статора в режиме х.х. [см. (9.16)]:

F0 = 0,45m1 I1 ω1 kоб1/ P (12.11)

I0 — ток х.х. в обмотке статора, А.

МДС обмоток статора и ротора на один полюс в режиме на­груженного двигателя

F1 = 0,45 m1 I1 ω1 kоб1/ P

F2 = 0,45 m2 I2 ω2 kоб2/ P (12.2)

где m2 — число фаз в обмотке ротора; ko62 — обмоточный коэффи­циент обмотки ротора.

При изменениях нагрузки на валу двигателя меняются токи в статоре I1, и роторе I2. Но основной магнитный поток Ф при этом сохраняется неизменным, так как напряжение, подведенное к об­мотке статора, неизменно (U1 = const) и почти полностью уравновешивается ЭДС Е1 обмотки статора [см. (12.3)]:

1 ≈ (- 1) (12.13)

Так как ЭДС Е1 пропорциональна основному магнитному по­току Ф [см. (7.20)], то последний при изменениях нагрузки остает­ся неизменным. Этим и объясняется то, что, несмотря на измене­ния МДС F1 и F2, результирующая МДС остается неизменной, т. е. 0 = 1 + 2 = const.

Подставив вместо F0, F1 и F2 их значения по (12.11) и (12.12), получим

0,45 m1 0 ω1 kоб1/ p = 0,45m1 1 ω1 kоб1/ p + 0,45 m2 2 ω2 ko62/ р.

Разделив это равенство наm1 ω1 kоб1/ p, определим уравнение токов асинхронного двигателя:

0 = 1 + 2 = 1 + 2 (12.14)

 

где

2 = 2 (12.15)

- ток ротора, приведенный к обмотке статора.

Преобразовав уравнение (12.14), получим уравнение токов статора асинхронного двигателя

1 = 0 + (- 2 ) (12.16)

из которого следует, что ток статора в асинхронном двигателе 1 имеет две составляющие: 0 - намагничивающую (почти постоянную) составляющую ( I0 I ) и - 2 —переменную составляющую, компенсирующую МДС ротора.

Следовательно, ток ротора I2 оказывает на магнитную систему двигателя такое же размагничивающее влияние, как и ток вторичной обмотки трансформатора (см. § 1.5). Таким образом, любое изменение механической нагрузки на валу двигателя сопровождается соответствующим изменением тока в обмотке статора I1 так изменение этой нагрузки двигателя вызывает изменение скольжения s. Это, в свою очередь, влияет на ЭДС обмотки ротора [см.(12.6)], а следовательно, и на ток ротора I2. Но так как этот ток развивает размагничивающее действие на магнитную систему двигателя, то его изменения вызывают соответствующие изменение тока в обмотке статора I1 за счет составляющей – I2 . Так, в режиме холостого хода, когда нагрузка на валу двигателя отсутствует и s 0, ток I2 0. В этом случае ток в обмотке статора 1 0. Если же ротор двигателя затормозить, не отключая обмотку статopa от сети (режим короткого замыкания), то скольжение s = 1 и ЭДС обмотки ротора Е2s достигает своего наибольшего значения Е2. Также наибольшего значения достигнет ток I2, а следовательно, и ток в обмотке статора I1.


Дата добавления: 2015-01-19; просмотров: 172; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Уравнения напряжений асинхронного двигателя | Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
lektsii.com - Лекции.Ком - 2014-2018 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты