Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Потери и КПД асинхронного двигателя




Читайте также:
  1. U–образные и рабочие характеристики синхронного двигателя
  2. БОЛЕЗНЕННЫЕ ПОТЕРИ
  3. В) Система управления электроприводами с несколькими обратными связями, поддерживающими постоянство скорости двигателя.
  4. ВЛИЯНИЕ РЕЖИМА ДВИЖЕНИЯ ЖИДКОСТИ НА ПОТЕРИ НАПОРА
  5. Влияние сечения нулевого провода на потери активной мощности и уравновешивание токов нулевой последовательности
  6. Вопрос 45. Трансформатор с линейными характеристиками. Устройство, принцип действия, баланс мощностей. Потери на вихревые токи и способы их уменьшения.
  7. ВПИТЫВАНИЕ И АДСОРБЦИЯ ПРОДУКТАМИ ЖИРА И ЕГО ПОТЕРИ ПРИ ЖАРКЕ
  8. Выбор двигателя. Кинематический расчет привода.
  9. Выбор электродвигателя
  10. Выбор электродвигателя и кинематический расчет

 

Преобразование электрической энергии в меха­ническую в асинхронном двигателе, как и в других электрических машинах, связано с потерями энер­гии, поэтому полезная мощность на выходе двигате­ля Р2 всегда меньше мощности на входе (потребляе­мой мощности) Р1 на величину потерь Р :

Р2 = Р1 - Р (13.1)

Потери Р преобразуются в теплоту, что в ко­нечном итоге ведет к нагреву машины. Потери в электрических машинах разделяются на основные и добавочные. Основные потери включают в себя магнитные, электрические и механические.

Магнитные потери Рм в асинхронном двигателе вызваны потерями на гистерезис и потерями на вих­ревые токи, происходящими в сердечнике при его перемагничивании. Величина магнитных потерь пропорциональна частоте перемагничивания Рм = f β,

где β = 1,3 ÷ 1,5. Частота перемагничивания сердеч­ника статора равна частоте тока в сети (f = f1), а частота перемагничивания сердечника ротора f = f2 =f1s.При частоте тока в сети f 1 = 50 Гц при номинальном скольжении sном = 1 ÷ 8 % частота перемагничивания ротора f = f2 = 2 ÷ 4 Гц, поэтому магнитные потери в сердечнике ротора настолько малы, что их в практи­ческих расчетах не учитывают.

Электрические потери в асинхронном двигателе вызваны нагревом обмоток статора и ротора прохо­дящими по ним токами. Величина этих потерь про­порциональна квадрату тока в обмотке (Вт):

электрические потери в обмотке статора

Рэ1 = m1 I21 r1 ; (13.2)

электрические потери в обмотке ротора

Рэ2 = m2 I22 r2 = m1 I′ 21 r′ 1 (13.3)

Здесь r1 и r2 — активные сопротивления обмоток фаз статора и ротора пересчитанные на рабочую температуру Θраб (см. § 8.4):

r1 = r1.20 [1 + α (Θраб - 20)]; r2 = r2.20 [1 + α (Θра6 - 20)], (13.4)

где r1.20 и r2.20 — активные сопротивления обмоток при температу­ре Θ1 = 20 °С; α — температурный коэффициент, для меди и алю­миния α = 0,004.

Электрические потери в роторе прямо пропорциональны скольжению:

Рэ2 = s Рэм (13.5)

где Рэм — электромагнитная мощность асинхронного двигателя, Вт:

Рэм = Р1 = (Рм + Рэ1) (13-6)

Из (13.5) следует, что работа асинхронного двигателя эконо­мичнее при малых скольжениях, так как с ростом скольжения растут электрические потери в роторе.



В асинхронных двигателях с фазным ротором помимо пере­численных электрических потерь имеют место еще и электрическиe потери в щеточном контакте Рэ.щ = 3 I2 ΔUщ /2, где Uщ =2,2 В - переходное падение напряжения на пару щеток.

Механические потери Рмех — это потери на трение в подшип­никах и на вентиляцию. Величина этих потерь пропорциональна квадрату частоты вращения ротора (Рмех = n22). В асинхронных двигателях с фазным ротором механические потери происходят еще и за счет трения между щетками и контактными кольцами ротора.

Добавочные потери включают в себя все виды трудноучитываемых потерь, вызванных действием высших гармоник МДС, пульсацией магнитной индукции в зубцах и другими причинами. В соответствии с ГОСТом добавочные потери асинхронных двигателей принимают равными 0,5% от подводимой к двигателю мощности Р1:

Рдо6 = 0,005 Р1. (13.7)

При расчете добавочных потерь для неноминального режима следует пользоваться выражением

Рдоб = Рдоб β2 (13-8)

где β = I1/ I1ном —коэффициент нагрузки.

Сумма всех потерь асинхронного двигателя (Вт)

P = Рэм + Рэ1 + Рэ2 + Рмех + Рдоб. (13.9)



На рис. 13.1 представлена энергетическая диаграмма асинхронного двигателя, из которой видно, что часть подводимой к двигателю мощности Р1 = m1 U1 I1 cos φ1 затрачивается в статоре на магнитные Ры и электрические Рэ1 потери. Оставшаяся после этого электромагнитная мощность Рэм [см. (13.6)] передается на ротор, где частично расходуется на электрические потери Рэ2 и преобра­зуется в полную механическую мощность Р′2. Часть мощности идет на покрытие механических Рмех и добавочных потерь Рдоб, а оставшаяся часть этой мощности Р2 составляет полезную мощ­ность двигателя.

У асинхронного двигателя КПД

η = Р2/ Р1 =1 - P. (13.10)

Электрические потери в об­мотках РЭ1 и РЭ2 являются пере­менными потерями, так как их величина зависит от нагрузки дви­гателя, т. е. от значений токов в обмотках статора и ротора [см. (13.2) и (13.3)]. Переменными яв­ляются также и добавочные потери (13.8). Что же касается магнитных Рм и механических Рмех, то они практически не зависят от нагруз­ки (исключение составляют двига­тели, у которых с изменением на­грузки в широком диапазоне меняется частота вращения).

Коэффициент полезного дей­ствия асинхронного двигателя с изменениями нагрузки также ме­няет свою величину: в режиме хо­лостого хода КПД равен нулю, а затем с ростом нагрузки он увели­чивается, достигая максимума при нагрузке (0,7 ÷ 0,8)Рном. При дальнейшем увеличении нагрузки КПД незначительно снижается, а при перегрузке (P2 > Рном) он резко убывает, что объясняется ин­тенсивным ростом переменных потерь (Рэ1 + Рэ2 + Рдоб), величина которых пропорциональна квадрату тока статора, и уменьшением коэффициента мощности. График зависимости КПД от нагрузки η = f (β) для асинхронных двигателей имеет вид, аналогичный представленному на рис. 1.41 (см. рис. 13.7).



КПД трехфазных асинхронных двигателей общего назначения при номинальной нагрузке составляет: для двигателей мощностью от 1 до 10 кВт ηном = 75 ÷ 88%, для двигателей мощностью более 10 кВт ηном =90 ÷ 94%.

Рис. 13.1. Энергетическая диа­грамма асинхронного двигателя

Пример 13.1.Трехфазный асинхронный двигатель работает от сети напряжением 660 В при соединении обмоток статора звездой. При номинальной нагрузке он потребляет из сети мощность Р1 = 16,7 кВт при коэффициенте мощности cos φ1 = 0,87. Частота ηвращения nном = 1470 об/мин. Требуется определилить КПД двигателя η hоm, если магнитные потери Рм = 265 Вт, а механические потери Рмех = 123 Вт. Активное сопротивление фазы обмотки статора r1.20 = 0,8 Ом, и класс нагревостойкости изоляции двигателя F (рабочая температура Θра6 =115 °С).

 

Решение. Ток в фазе обмотки статора

I1ном = = =16,8 А

где U1 = 660/ = 380 В.

Сопротивление фазы обмотки статора, пересчитанное на рабочую температуру

Θраб = 115 ˚С, по (13.4)

r1 = r1.20 [1 + α (Θраб - 20)] = 0,8[1 + 0,004(115 - 20)] = 1,1 Ом.

Электрические потери в обмотке статора по (13.2)

Рэ1 = m1 I21ном r1 = 3 • 16,82 • 1,1 = 93 1 Вт.

Электромагнитная мощность двигателя по (13.6)

РЭМ = Р1 - (Рм + Рэ1) = 16,7 • 103 - (265 + 931) = 15504 Вт.

Номинальное скольжение sном = (n1 – nном)/ n1 = (1500 - 1470)/1500 = 0,020 . Электрические потери в обмотке ротора по (13.5)

Рэ2 =sном Рэм = 0,020 • 15504 = 310 Вт.

Добавочные потери по (13.7)

Рдо6 = 0,005 Р1 =0,005 • 16,7 • 103 =83 Вт.

Суммарные потери по (13.9)

Р = Рм + Рэ1 + Рэ2 + Рмех + Рмех = 265 + 931 + 310 + 123 + 83 = 1712 Вт.

КПД двигателя в номинальном режиме по (13.10)

ηном = 1 - Р/ Р1 = 1 - 1712/ (16,7 • 103) = 0,898 , или 89,8%.

 

Коэффициент полезного действия является одним из основ­ных параметров асинхронного двигателя, определяющим его энергетические свойства — экономичность в процессе эксплуатации. Кроме того, КПД двигателя, а точнее величина потерь в нем, регламентирует температуру нагрева его основных частей и в первую очередь его обмотки статора. По этой причине двигатели с низким КПД (при одинаковых условиях охлаждения) работают при более высокой температуре нагрева обмотки статора, что ведет к сниже­нию их надежности и долговечности (см. § 8.4).


Дата добавления: 2015-01-19; просмотров: 40; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты