Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Обратимый преобразователь напряжения




Читайте также:
  1. Активная, реактивная и полная мощности в цепях с несинусоидальными периодическими напряжениями и токами.
  2. Аналого-цифровой преобразователь
  3. Асинхронный преобразователь частоты
  4. Величина порогового напряжения и пути ее регулирования
  5. Влияние времени воздействия напряжения
  6. Влияние времени приложения напряжения на электрическую прочность газовой изоляции (вольт-секундная характеристика — ВСХ)
  7. Внутренние перенапряжения
  8. Вопрос 15. Неразветвлённая цепь с переменным сопротивлением нагрузки. Зависимость напряжения, тока и КПД цепи от сопротивления нагрузки.
  9. Вопрос 17. Режимы работы источника напряжения. Определение потенциалов точек цепи и их расчёт. Построение потенциальной диаграммы.
  10. Вопрос 3. Источники напряжения и тока (определение, условно графическое обозначение, взаимное преобразование). Примеры источников напряжения и тока.

Предлагаемое устройство предназначено для аварийного питания энергозависимых электронных устройств с небольшим током потребления от резервного источника при пропадании напряжения в сети (например, генератора и счетчика импульсов электронных часов, установленных в автомобиле). Преобразователь (см. рис. 4.1) содержит резервную аккумуляторную батареюGB1, задающий генератор на элементах DD1.1...DD1.3, двухразрядный счетчик на D-триггерах DD2.1, DD2.2, двойной четырехканальный мультиплексор DD3 и емкостный накопитель-делитель — конденсаторы С2...С5.

При наличии напряжения в бортовой сети устройство работает в режиме деления ее напряжения и подзарядки батареи GB1.Буферный режим обеспечен двунаправленным мультиплексором DD3, который поочередно подключает батарею параллельно одному из конденсаторов С2...С5 емкостного делителя напряжения. В результате батарея заряжается до напряжения, равного четверти напряжения бортовой сети.

В момент пропадания напряжения в сети преобразователь автоматически переходит в режим умножения напряжения резервной батареи. В этом режиме конденсаторы С2....С5 через мультиплексор DD3 последовательно заряжаются от батареи GB1, а поскольку они соединены последовательно, на выходе устройства создается напряжение, равное учетверенному напряжению батареи, которое питает не только обслуживаемое электронное устройство, но и микросхемы самого преобразователя. Сигналы управления

мультиплексором поступают с выходов счетчика (DD2.1, DD2.2), который через буферный элемент DD1.3 подключен к выходу генератора импульсов с частотой следования около 5 кГц. Поскольку в режиме умножения напряжения узлы преобразователя питаются его выходным напряжением, для первоначального запуска необходимо кратковременно подать в цепь питания напряжение бортовой сети. После самовозбуждения генератора преобразователь работает от батареи GB1. Если устройство предполагается использовать в качестве резервного источника питания электронных часов, генератор на элементах DD1.1, DD1.2может и не понадобиться: его вполне можно заменить задающим генератором часов. Это позволит снизить потребляемый преобразователем ток до уровня 10...20 мкА.

Как показала проверка, при использовании батареи GB1 из трех соединенных последовательно аккумуляторов Д-0,25 выходное напряжение преобразователя на нагрузке сопротивлением 68 кОм (ток нагрузки — 150 мкА) равно 10,1 В, а в режиме холостого хода — 10,8 В. При установке устройства в автомобиле для аварийного питания часов на микросхемах серии К561 допускается подключение его к бортовой сети напряжением 12 В через развязывающий диод, предотвращающий перегрузку преобразователя. Преобразователь не нуждается в налаживании, однако необходимо иметь в виду, что напряжение резервной батареи не должно превышать 4 В. В противном случае амплитуда выходного (умноженного) напряжения превысит максимально допустимое напряжение входных сигналов для микросхем серии К561, что приведет к выходу их из строя. Отсутствие в преобразователе развязывающих диодов и транзисторных ключей обеспечивает КПД, достигающий 80...90%.



Простота, обратимость функций, возможность реализации буферного режима для резервного источника с малой ЭДС позволяют использовать описанный преобразователь напряжения как аварийный источник питания для различных устройств с памятью. Для того чтобы устранить вероятность перезарядки батареи GB1, целесообразно стабилизировать напряжение питания устройства, выбрав его таким, чтобы напряжение на выводах 3 и 13 мультиплексора не превышало напряжения батареи GB1. В том случае, когда включение резервного источника — событие редкое и кратковременное, для предотвращения перезарядки батареи достаточно последовательно с ней включить токоограничивающий резистор, шунтированный диодом. Резистор подбирают из условия обеспечения зарядного тока, равного току саморазрядки. В режиме умножения напряжения батарея оказывается подключенной к мультиплексору через открытый диод.



 

    1. ПЧ с непосредственной связью нагрузки с сетью.


по выходной частоте НПЧ.°Данный класс ПЧ, получивший название “Непосредственные преобразователи частоты” (НПЧ), характерен однократным преобразованием энергии. Потребляемая из сети переменного тока электроэнергия с неизменными напряжением и частотой преобразуется в одном силовом устройстве в энергию переменного тока с регулируемыми по амплитуде и частоте напряжением и током нагрузки, в качестве которой служит 3-х фазный двигатель. В структурном отношении НПЧ весьма прост, его основу составляет реверсивный ТП постоянного напряжения. Если изменять управляющее напряжение ТП по синусоидальному закону с определенной частотой, то на выходе преобразователя получим выпрямленную ЭДС, синусоидально изменяющуюся с той же частотой и приложенную к однофазной нагрузке переменного тока. Изменяя частоту и амплитуду управляющего сигнала, будем изменять соответственно частоту и амплитуду выходной ЭДС. Очевидно, что для 3-х фазной нагрузки потребуется три комплекта реверсивных ТП, работающих с синхронизированным сдвигом фаз в 120



Число фаз входного и выходного напряжений НПЧ является весьма существенным признаком их классификации, т.к. оно в значительной мере определяет структуру построения схемы преобразователя.

Рассмотрим принцип работы НПЧ с естественной коммутацией на примере трехфазно- однофазной схемы (рис 82).

В схеме преобразователя можно выделить две группы тиристоров: 1- катодную (V1; V2; V3) и 2- анодную (V4; V5; V6).

Допустим, что нагрузка zн активная. Включающие импульсы в процессе работы поступают на тиристоры катодной и анодной групп поочередно. Когда включающие импульсы, синхронизированные по частоте с напряжением питающей сети, подаются последовательно на тиристоры V1, V2, V3 .aкатодной группы, она работает в режиме выпрямления (по 3-х фазной нулевой схеме), формируя на нагрузке положительную полуволну выходного напряжения относительно нулевого вывода трансформатора. Угол управления тиристоров-

При работе тиристоров V4, V5, V6 анодной группы на нагрузке относительно нулевого вывода трансформатора формируется отрицательная полуволна напряжения. В результате цикличной работы групп 1 и 2 на нагрузке создается переменное напряжение с частотой основной гармоники f2, более низкой, чем частота питающей сети f1.

Частота f2 можно регулировать выходное напряжение. Для исключения постоянной составляющей в напряжении на нагрузке время работы катодной и анодной групп должно быть одинаковым. На рис 83 представлена диаграмма выходного напряжения при активной нагрузке.aопределяется временем, в течение которого проводят ток тиристоры каждой группы. Изменением угла

Из диаграммы видно, что тиристоры катодной группы вступают в работу только после спада до нуля полуволны напряжения, формируемой анодной группой, и наоборот. Это объясняется тем, что тиристор находится во включенном состоянии до тех пор, пока ток, протекающий через него (в рассматриваемом случае ток совпадает по фазе с напряжением), ни спадет до нуля.

/3. В общем случае, при пульсности, равной mpВ трехфазно- однофазной схеме тиристоры каждой группы коммутируют между собой (внутригрупповая коммутация) через интервал, равный 2n /mpэтот интервал составляет (2n) радиан. Поэтому без учета угла коммутации можно записать следующее выражение для длительности одной полуволны выходного напряжения:

(5-77)

где: n- число участков синусоид в полуволне выходного напряжения.

/mp-(2p(n))- угол, обусловленный подъемом от нуля до точки естественной коммутации переднего фронта полуволны выходного напряжения плюс угол, обусловленный спаданием до нуля заднего фронта этой полуволны.

В общем случае при пульсности выпрямленного напряжения mn связь частот выходного и входного напряжений выражается соотношением:

(5-78)

где f1 и f2 - частоты входного и выходного напряжений (основной гармоники).

Из (5-78) видно, что частота выходного напряжения f2 может принимать только дискретные значения при изменении числа n (n= 1,2,3,4...). Например, при пульсности mn = 3 и частоте f1= 50 Гц частота f2 может принимать значения: (50; 30; 21,45; 16,66) Гц и т.д. При пульсности mn = 6 и частоте f1 =50 Гц частота f2 может принимать значения: (50; 37,5; 30; 25; 21,45; 18,75) и т.д.

. Поэтому далеко на все указанные частоты выходного напряжения могут быть использованы.°Нужно иметь в виду, что при 3-х фазной нагрузке необходимо обеспечить сдвиг фаз выходного напряжения на 120

j в сторону опережения. Такое следование импульсов соответствует инверторному режиму работы тиристоров. Источником постоянного напряжения, под воздействием которого протекает инвертируемый ток, в данном случае является нагрузка, а точнее ее индуктивная составляющая. В результате инверторного режима работы части тиристоров группы “1” происходит возврат энергии, накопленной в индуктивности, в сеть и спадание тока нагрузки до нуля. Затем система управления преобразователем обеспечивает аппаратную паузу b, то, начиная с определенного момента, включающие импульсы тиристоров группы “1” начинают поступать со сдвигом относительно напряжений питающей сети на угол aПри активно- индуктивной нагрузке моменты прохождения через нуль полуволны выходного напряжения не соответствуют нулевым значениям токов нагрузки, т.к. индуктивность нагрузки обусловливает запаздывание тока относительно напряжения. Для того, чтобы в этом случае обеспечить протекание тока под действием ЭДС нагрузки в питающую сеть (что соответствует возврату в сеть энергии, накопленной в индуктивности, т.е. ее рекуперации), соответствующую тиристорную группу нужно перевести в инверторный режим работы. Например, если группа тиристоров “1” работала в выпрямительном режиме с углом управления п после которой начинает работать в выпрямительном режиме группа тиристоров “2”, часть из которых переходит в заданный программой управления момент в инверторный режим. Далее рассмотренные процессы периодически повторяются.

НПЧ часто выполняются на основе групп тиристоров, каждая из которых имеет конфигурацию 3-х фазной мостовой схемы. В электроприводе используются обычно НПЧ с 3-х фазной системой напряжения на выходе.

Структурная схема такого НПЧ изображена на рис 87. Новым элементом в этой схеме по сравнению с реверсивным ТП оказывается задающее устройство ЗУ, которое формирует в соответствии с заданием на амплитуду Uз А и частоту Uз fуправляющие напряжения Uу1, Uу2, Uу3, образующие 3-х фазную систему.

Для частотного управления электропривода переменного тока средней и большой мощности применяется мостовые схемы вентильных групп (рис 88).

Вентильная группа для каждой фазы нагрузки состоит из двух подгрупп ВГ1 и ВГ2, образующих два моста, соединенных встречно- параллельно. Если вентильные группы подключены параллельно к одному источнику питания, как показано на рис 88, то фазы нагрузки должны быть гальванически развязаны друг от друга. При электрически объединенной 3-х фазной нагрузке с целью устранения короткозамкнутых контуров вентильные группы 1ВГ, 2ВГ и 3ВГ должны получать питание от индивидуальных вторичных обмоток трансформатора.

Входная коммутационная аппаратура, токоограничивающие реакторы и защитные цепи на схеме не показаны.

приходим к выводу, что максимальная частота, реализуемая в шестипульсных НПЧ, примерно в два раза меньше частоты питающей сети. Этот факт является недостатком НПЧ, используемых в системах электропривода. Сниженная частота НПЧ по сравнению с номинальной частотой сети приводит к недоиспользованию двигателя по скорости, а следовательно, и по мощности.°Анализируя формулу (5-78), а также учитывая необходимость сдвига фаз выходного напряжения при 3-х фазной нагрузке на 120

Рис.88

Поэтому целесообразно применение асинхронных двигателей с номинальной частотой питания меньше 50 Гц.

Однократное преобразование энергии переменного тока с высоким КПД делает НПЧ перспективным преобразователем, управляющим наиболее массовым и дешевым типом двигателя- асинхронным двигателем с короткозамкнутым ротором.

Структурная идентичность НПЧ с реверсивным ТП постоянного тока является предпосылкой для схемной и конструктивной унификации данных преобразователей. Выполненная в виде унифицированного блока- модуля шестивентильная тиристорная группа может использоваться, как составляющая часть при построении ТП постоянного тока, а также НПЧ.

Основными достоинствами НПЧ с естественной коммутацией являются:

 

  1. Относительно высокий КПД, что достигается благодаря однократному преобразованию электрической энергии.
  2. Возможность двухстороннего обмена энергией между питающей сетью и двигателем, что обеспечивает как двигательные, так и тормозные режимы электропривода с рекуперацией энергии в сеть.
  3. Возможность использования естественной коммутации вентилей с неполным управлением, что позволяет отказаться от устройств принудительной коммутации, снижающих экономичность, надежность, перегрузочную способность и ухудшающих массогабаритные показатели преобразователя частоты.
  4. Возможность получения сколь угодно низких частот выходного напряжения преобразователя и обеспечения равномерного вращения двигателя на малых скоростях.
  5. Практически неограниченная мощность НПЧ.
  6. Возможность конструирования преобразователей по блочно–модульному принципу, обеспечивающему удобство эксплуатации и резервирования.


Основные недостатки НПЧ:

 

  1. Ограничение максимальных значений выходной частоты на уровне порядка 0,5 от частоты сети.
  2. Наличие субгармоник и постоянных составляющих выходного напряжения и тока при неблагоприятных соотношениях частот на входе и выходе преобразователя.
  3. Низкий коэффициент мощности, несинусоидальность входных токов преобразователя частоты как потребителя в системе электроснабжения.
  4. Сложность (многоэлементность) силовых цепей и цепей управления, что является оправданным лишь при выполнении ПЧ на сравнительно большие мощности.


В связи с этим НПЧ получили применение в основном для регулируемых тихоходных синхронных и асинхронных электроприводов средней и большой мощности. Здесь используются НПЧ с естественной коммутацией, получившие название циклоконверторы.

Параллельно с циклоконверторами разрабатывались НПЧ с принудительной коммутацией, реализация которых ориентирована на полностью управляемые ключи переменного тока.

 

42.варийные режимы работы ТП. Защита ТП от аварийных токов.


Средства и способы защиты от коротких замыканий и перегрузок.
6.1.1. Защита запиранием тиристоров.
Выполняется несколькими способами:

а) быстродействующая токовая отсечка - при достижении током порогового значения (тока отсечки) СИФУ увеличивает угол управления (a),предотвращая тем самым дальнейшее увеличение тока;

б) прекращение подачи включающих импульсов на управляющие электроды;

в) прекращение подачи включающих импульсов с принудительным гашением тиристоров.

Наиболее эффективным видом защиты из перечисленных способов является третий вид, в котором используется принудительное выключение тиристоров. Такая защита состоит из трех функциональных узлов: датчика тока, элемента сравнения и преобразования сигнала и исполнительного органа защиты. Функциональная схема защиты приведена на рис.89.

Рис. 89

В основу работы защиты положен способ выключения рабочих тиристоров VR с помощью коммутирующего конденсатора CK. Этот конденсатор предварительно заряжается до напряжения UK от зарядного устройства ЗУ. Конденсатор CK подключен к анодам защищаемых рабочих тиристоров VR и к общему катоду через коммутирующий тиристор VK. При подаче включающего импульса на управляющий электрод VK последний включается и конденсатор CK оказывается подключенным параллельно рабочему тиристору VR .Быстро нарастающий разрядный ток конденсатора направлен навстречу току нагрузки IH и переводит тиристоры VR в закрытое состояние. Одновременно включается вспомогательный тиристор VBСP., закорачивающий цепи управляющих электродов защищаемых тиристоров, и тем самым снимающий управляющие импульсы, поступающие из СИФУ. Командный импульс на срабатывание защиты UO поступает на управляющие электроды тиристоров VK и VBСP. от элемента сравнения э.ср. Последний сравнивает величину напряжения UT , поступающего с датчика тока ДТ, с напряжением уставки U3.T., и при превышении током заданного значения вырабатывает сигнал на отключение.

Главным достоинством этой защиты является ее высокое быстродействие. После включения тиристора VK рабочие тиристоры выключаются за время 20ё30 микросекунд. Полное время действия защиты несколько больше из-за запаздывания, вносимого датчиком тока и элементом сравнения, но, тем не менее, за время 100ё200 микросекунд токи короткого замыкания не успевают вырасти до больших значений.

Недостатком защиты с принудительным гашением, ограничивающим ее применение, является ее сложность. Поэтому используются другие виды защиты, а часто и несколько сразу.

6.1.2.Защита посредством автоматических выключателей (автоматов).
При питании ТП от трансформаторов мощностью 750-1000кВА (они наиболее распространены на заводских подстанциях) токи короткого замыкания могут достигать значений 20000-30000А т.е. превышать номинальные токи тиристоров в десятки раз. Тиристоры могут выдерживать такие токи лишь несколько миллисекунд. Но автоматические выключатели обычного исполнения (АЗ 100, АП-50, АК-63 и др.) имеют время отключения порядка 15ё45 миллисекунд. За это время тиристоры, как правило, успевают разрушиться. Таким образом, защитить тиристоры от к.з. посредством автоматических выключателей обычного исполнения без применения дополнительных мер невозможно т.к. быстродействие их недостаточно. Для того, чтобы защита автоматами была эффективной, необходимо ограничить величину тока к.з. до такого значения IК ДOP, чтобы за время отключения автоматического выключателя тиристоры не успевали выйти из строя.

Для ограничения токов к.з. на вход ТП со стороны переменного тока включаются реакторы. Токоограничивающие реакторы одновременно ограничивают и скорость нарастания тока тиристоров (di/dt )при их включении, а при питании от одного общего трансформатора нескольких преобразователей уменьшают их взаимное влияние друг на друга из-за искажения формы синусоиды питающего напряжения (коммутационные провалы). Т.к. реакторы не должны уменьшать свою индуктивность при токах к.з., они выполняются воздушными без стального сердечника. В то же время следует учитывать, что при включении реакторов ток к.з. может снизиться настолько, что окажется меньше тока срабатывания автомата, т.е. чувствительность защиты окажется недостаточной. Кроме того, при уменьшении кратности тока к.з. (IK / IНОМ) время отключения автомата увеличивается. Поэтому даже при включении в подводящие провода токоограничивающих реакторов защитить ТП с помощью автоматов обычного исполнения все равно не удается. Для обеспечения требуемой чувствительности и надежности действия защиты следует применять автоматы специального исполнения с пониженной кратностью тока срабатывания максимального расцепителя (например, серии АП-ЗИТ-3,5, у которых ток срабатывания превышает номинальный в 3,5раза, а не в 10ё14 раз, как у автоматов обычного исполнения серии АП-ЗИТ или АЗ100).

Если в цепи выпрямленного тока вероятны частые короткие замыкания, то нужно применить защиту при помощи автоматических выключателей постоянного тока. Защита на стороне выпрямленного тока должна обязательно устанавливаться в случае использования рекуперативного торможения, т.е. инверторного режима работы ТП.

Следует отметить, что громоздкость и дороговизна большинства типов автоматических выключателей постоянного тока (например, выключателей типа ВАБ) ограничивают их применение.

Недостатком автоматических выключателей является возникновение перенапряжений при отключении аварийных токов. При использовании автоматов защита обычно выполняется таким образом, что одновременно с отключением автомата снимаются управляющие импульсы с тиристоров.
6.1.3. Защита плавкими предохранителями.
При выборе тиристоров без многократного запаса по току плавкие предохранители общепромышленных типов так же, как и обычные автоматы, не могут обеспечить защиту тиристоров от действия токов к.з. так как срабатывают недостаточно быстро.

Перегрузочная способность тиристора или неуправляемого вентиля (при импульсах тока длительностью до 10 мс ) определяется интегралом произведения квадрата тока на время его действия (i2 t) ДОП. Для обеспечения защищенности полупроводниковых приборов устройства защиты должны обеспечить ограничение амплитуды и длительности аварийного тока такими значениями, чтобы обеспечивалось основное соотношение защищенности

t

т i2dt Ј ( i2t ) доп (6-79)

o

где t - время действия аварийного тока до полного его исчезновения;

(i2t)ДОП - допустимая перегрузочная способность полупроводникового прибора.

Левая часть выражения (6-79) представляет собой величину, пропорциональную количеству тепла, выделяемого при прохождении электрического тока за определенный промежуток времени, а правая - допустимое для вентиля значение. Поэтому величины (i2t)ДОП называют также тепловыми эквивалентами.

Применительно к плавким предохранителям необходимо, чтобы время плавления и отключения предохранителя были меньше того времени, в течение которого наступает разрушение тиристора. Для этого необходимо, чтобы так называемый полный интервал предохранителя был меньше теплового эквивалента тиристора, т.е.

t2

кЗ ( т i2 dt )пред Ј ( i2t )доп тир (6-80)

о

где t2 - полное время отключения предохранителя от начала короткого замыкания до гашения дуги;

кЗ=1,2ё1,5 - коэффициент запаса;

Условию (6-80) отвечают только специальные быстродействующие плавкие предохранители (ПНБ; ПНБМ; ПБВ; ПРС; ПБФ). Быстродействующие плавкие предохранители по быстродействию превосходят автоматические выключатели.

Если номинальный ток предохранителя соответствует номинальному току вентиля (близок к предельному току) и в плечах преобразователя не используется параллельное соединение вентилей, то условие (6-80) для многих типов даже быстродействующих предохранителей не выполняется. То есть, даже специальные быстродействующие предохранители не всегда могут защитить тиристоры, если не применены дополнительные меры по повышению надежности защиты. Одной из таких мер является недогрузка вентилей по току. При этом становится возможным использовать такие предохранители, номинальный ток которых меньше номинального тока вентилей, и условие (6-80) будет выполняться. При параллельном соединении нескольких вентилей в случае внутреннего повреждения преобразователя (пробоя одного из вентилей) аварийный ток, который протекает через предохранитель, установленный в цепи поврежденного вентиля, в «n» раз больше, чем ток в цепи каждого из неповрежденных вентилей, где «n» - количество параллельно включенных вентилей, и выполнение условия (6-80) облегчается. Надежная защита полупроводниковых вентилей существующими типами плавких предохранителей может быть обеспечена лишь для преобразователей большой мощности, с большим числом параллельно включенных вентилей. Для обеспечения защиты преобразователей средней и малой мощности с помощью быстродействующих предохранителей приходится снижать нагрузку на вентили, что приводит к увеличению числа вентилей и повышению стоимости преобразователей.

Быстродействующие предохранители обычно снабжаются различными сигнализационными устройствами: визуальными указателями срабатывания, блок - контактами, сигнальными неоновыми лампами.

Наиболее широко плавкие предохранители используются в мощных преобразователях с большим числом параллельных вентилей для защиты от внутренних повреждений. При пробое одного из параллельно включенных тиристоров сгорает соединенный последовательно с ним предохранитель, а вся установка в целом остается в работе.

Здесь наилучшим образом выполняется одно из требований, предъявляемых к устройствам защиты, которое называется селективностью. Селективностью принято называть такое качество защиты, когда отключение производится только в той цепи, где возникла причина аварии, а другие участки силовой цепи остаются в работе, если они могут при этом нормально функционировать.

Рассматривая различные виды защиты от аварийных режимов работы ТП, необходимо сказать, что каждый вид защиты имеет достоинства и недостатки. Поэтому на практике, как правило, применяется комбинированная защита с использованием нескольких видов защитных средств. Единой системы защиты тиристорных электроприводов нет. В зависимости от типа привода, мощности и степени ответственности установки применяются различные системы защиты.


43. Аварийные режимы работы ТП. Защита ТП от перенапряжений.


Тиристоры, плохо противостоят действию перенапряжений, зачастую сами являются их источниками. В связи с этим в тиристорных электроприводах должны быть предусмотрены меры для предупреждения и ограничения перенапряжений и средства для защиты тиристоров от действия последних.

Перенапряжения бывает внутренними и внешними и обусловлены действием целого ряда причин:

1 Коммутационное перенапряжение, возникающие в момент выключения вентиля заканчивающей работу фазы, когда обратный ток, проходящий через индуктивность обмоток трансформатора, разрывается большим внутренним сопротивлением выключаемого вентиля.

2 Отключение питающих трансформаторов с первичной стороны, особенно при холостом ходе.

3 Отключение выключателя или перегорание предохранителя в цепи выпрямленного тока при индуктивной нагрузке.

4 Резонансные явления при включении трансформатора.

5 Перенапряжения в питающей сети.

6 Возрастание ЭДС двигателя при быстром увеличении потока.


Дата добавления: 2015-01-29; просмотров: 54; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.027 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты