Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Соединение фаз генератора и приемника треугольником




При соединении источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к приемникам.

Рис. 3.12

Соединение фаз источника в замкнутый треугольник возможно при симметричной системе ЭДС, так как

(3.17)

ĖA + ĖB + ĖC = 0.

Если соединение обмоток треугольником выполнено неправильно, т.е. в одну точку соединены концы или начала двух фаз, то суммарная ЭДС в контуре треугольника отличается от нуля и по обмоткам протекает большой ток. Это аварийный режим для источников питания, и поэтому недопустим.

Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению.

(3.18)

UЛ = UФ.

Пренебрегая сопротивлением линейных проводов, линейные напряжения потребителя можно приравнять линейным напряжениям источника питания: Uab = UAB, Ubc = UBC, Uca = UCA. По фазам Zab, Zbc, Zca приемника протекают фазные токи İab, İbc и İca. Условное положительное направление фазных напряжений Úab, Úbc и Úca совпадает с положительным направлением фазных токов. Условное положительное направление линейных токов İA, İB и İC принято от источников питания к приемнику.

В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам

(3.19)

İab = Úab / Zab; İbc = Úbc / Zbc; İca = Úca / Zca.

Линейные токи можно определить по фазным, составив уравнения по первому закону Кирхгофа для узлов a, b и c (рис 3.12)

(3.20)

İA = İab - İca; İB = İbc - İab; İC = İca - İbc.

Сложив левые и правые части системы уравнений, (3.20), получим

(3.21)

İA + İB + İC = 0,

т.е. сумма комплексов линейных токов равна нулю как при симметричной, так и при несимметричной нагрузке.


Поделиться:

Дата добавления: 2015-01-29; просмотров: 124; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты