КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Логические операцииОсновные логические операции над высказываниями, используемыми в ЭВМ, включают отрицание, конъюнкцию, дизъюнкции, стрелку Пирса и штрих Шеффера. Рассмотрим эти логические операции. 1. Отрицание (обозначается также ØX, ~X). Отрицание (NOT, читается «не X») – это высказывание, которое истинно, если X ложно, и ложно, если X истинно. 2. Конъюнкция XY (X&Y, XÙY). Конъюнкция XY (AND, логическое умножение, «X и Y») – это высказывание, которое истинно только в том случае, если X истинно и Y истинно. 3. Дизъюнкция X+Y (XÚY). Дизъюнкция X+Y (OR, логическая сумма, «X или Y или оба») – это высказывание, которое ложно только в том случае, если X ложно и Y ложно. 4. Стрелка Пирса X ¯ Y. Стрелка Пирса X ¯ Y (NOR (NOT OR), ИЛИ-НЕ) – это высказывание, которое истинно только в том случае, если X ложно и Y ложно. 5. Штрих Шеффера X | Y. Штрих Шеффера X | Y (NAND (NOT AND), И-НЕ) – это высказывание, которое ложно только в том случае, если X истинно и Y истинно. Определить значения логических операций при различных сочетаниях аргументов можно из таблицы истинности.
Таблица истинности для основных логических операций, используемых в ЭВМ
Чтобы определить значение операции 0 + 1 в таблице истинности, необходимо на пересечении столбца X + Y (определяет операцию) и строки, где X = 0 и Y = 1 (так первый аргумент равен 0, а второй – 1), найти значение 1, которое и будет являться значением операции 0 + 1. В алгебре высказываний существуют две нормальные формы: конъюнктивная нормальная форма (КНФ) и дизъюнктивная нормальная форма (ДНФ). КНФ – это конъюнкция конечного числа дизъюнкций нескольких переменных или их отрицаний (произведение сумм). Например, формула X(Y + Z) находится в КНФ. ДНФ – это дизъюнкция конечного числа конъюнкций нескольких переменных или их отрицаний (сумма произведений). Например, формула X + YZ находится в ДНФ. Логические операции обладают свойствами, сформулированными в виде равносильных формул.
Порядок применения формул при преобразованиях - перечисленные формулы рекомендуется применять в следующем порядке: 1) преобразование стрелки Пирса (6.22) и штриха Шеффера (6.23); 2) законы де Моргана (6.8)-(6.9); 3) формулы дистрибутивности (6.6)-(6.7); 4) элементарные поглощения (6.18)-(6.21). Обычно формула приводится к ДНФ, а затем отдельные слагаемые поглощаются.
|